簡易檢索 / 詳目顯示

研究生: 張凱翔
Kai-Hsiang Chang
論文名稱: 曲面零件加工之定位點與夾持點搜尋法則
Generation of Locating and Fixturing Points for Machining of Complex Parts with Free-form Surfaces
指導教授: 林清安
Alan C. Lin
口試委員: 簡孟樹
none
郭進星
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: 3-2-1定位原理自由曲面零件夾持三軸曲面零件加工
外文關鍵詞: 3D CAD, 3-2-1 fixturing, Free-form surface
相關次數: 點閱:239下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 零件之「定位」與「夾持」為加工中首要考量的因素,曲面零件因為沒有明顯的平面特徵,所以定位與夾持相當困難。業界常以虎鉗夾持六面體素材來進行加工,但對於曲面零件的夾持往往必須設計專用夾具,甚至必須在曲面上建立能夠定位的平面特徵,此為相當不易且浪費時間的工作。
    傳統之3-2-1定位原理時常被運用於規則幾何機械零件之定位與夾持,而這些零件必需具有容易定位與夾持的平面特徵,但當今之消費性產品大都為不規則形狀之曲面造型,沒有明顯的平面可供定位與夾持,因此本論文依X、-X、Y、-Y、Z、-Z六個方向夾45º夾角,以分出六個點群來對應到六面體的六個正交平面,將點群資料分別以X、Y、Z為參考做遞增排序後,刪除因非凸曲面造成不是在最外圍的點資料後,以3-2-1定位原理應用於曲面零件上,找尋適當的定位點與夾持點。最後,以這些參考點設計出一個彈性化夾具來進行夾持驗證,並於加工模擬軟體上模擬三軸加工之可行性。
    彈性化的夾具設計能處理不同幾何形狀的曲面零件之夾持,降低專用化夾具設計的時間及人力成本,也能降低設計者加工經驗之門檻,突破設計與製造的鴻溝。


    Fixturing and clamping of workpieces are one of the primary factors for machining processes. Lacking of obvious plane features makes it fairly difficult to clamp and locate a mechanical part with free-form surfaces. Clamping process by vises is often used for hexahedral workpieces in industrial applications, but for free-form surfaces, customized fixtures often must be designed for clamping process, and even a plane feature should be designed on a free-form surface part. These tasks are quite difficult and time-consuming.
    The traditional 3-2-1 fixturing concept is often used to locate and clamp basic general mechanical parts which are composite by simple plane elements. On the contrary, free-form surfaces rarely include a plane feature so that it is difficult to locate and clamp. Therefore, this thesis classifies 6 groups of points by 45 degree boundary of normal vector on surfaces in six directions which are X, -X, Y, -Y, Z and -Z, similar to the six-axis orthogonal plane on hexahedral workpieces. After that, sort the point data in ascending order by X, Y, and Z to filter the points which are not on the outermost area occurs on a non-convex surface. At last, applying the 3-2-1 concept on a free-form surface and generate fixturing and clamping points by reference of the six point groups. After generating these reference points, a flexible fixture will be designed and after that we can verify those points for 3-axis machining by CAD model design and simulating machining process on computer aided manufacturing software.
    Clamping different shape of free-form surfaces by a flexible fixture reduces the time and labor costs on design a customized one, and flexible fixture designing for free-form surfaces not only reduce the difficulty for designer which occur by lacking of processing experience, but also break the barrier between designer and manufacturer.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 第一章 緒論 1 1.1 研究動機及背景 1 1.2 研究方法 2 1.3 文獻探討 2 1.4 論文架構 4 第二章 曲面零件之法向量點分群 6 2.1 依加工區域排除不適合夾持之點資料 10 2.2 Convex曲面法向量點分群 11 2.3 Non-convex曲面法向量分群 15 2.4 點座標排序方法 17 2.5 連續曲面判別方法 20 第三章 定位點與夾持點之搜尋法則 22 3.1 零件依加工法則定義方位 22 3.2 定位點搜尋法則 25 3.3 夾持點搜尋法則 37 3.3.1 投影方法 40 3.3.2 依夾持點搜尋法則應用於曲面零件 42 3.3.3 六面體素材夾持點之簡化 54 第四章 實例驗證 62 4.1 夾具本體設計與夾持機構設計 62 4.2 曲面零件之夾持 64 4.3 定位通用法則 66 4.3.1 加工模擬結果 71 第五章 結論與未來研究方向 73 5.1 結論 73 5.2 未來研究方向 73 參考文獻 75

    [1] Hui Wang, Yiming Rong, Hua Li and Price Shaun (2010), “Computer aided fixture design: Recent research and trends,” Computer-Aided Design, Vol. 42, pp. 1085-1094.
    [2] Bartholomew O Nnaji, Saqib Alladin and Paul Lyu (1988), ”A framework for a rule-based expert fixturing system for face milling planar surfaces on a CAD system using flexible fixtures,” Journal of Manufacturing Systems,Vol. 7, pp. 193-207.
    [3] Cai-Hua Xionga, You-Fu Lib, Y. Kevin Rongc and You-Lun Xiong (2002), “Qualitative analysis and quantitative evaluation of fixturing”, Robotics and Computer Integrated Manufacturing, Vol. 18, pp. 335-342.
    [4] Van-Duc Nguyen (1988) ,“Constructing Force-Closure Grasps,” International Journal of Robotics Research, Vol.7, pp. 3-16.
    [5] Xanthippi Markenscoff, Luqun Ni and Christos H. Papadimitriou (1990), “The Geometry of Grasping,” International Journal of Robotics Research, Vol. 9, pp. 61-74.
    [6] J. Loncaric (1987), “Normal Forms of Stiffness and Compliance Matrices,” IEEE Journal on Robotics and Automation, Vol. 3, pp. 567-572.
    [7] Y. Wu, Y. Rong, W. Ma, S.R. LeClair (1998), “Automated modular Fixture planning:Accuracy, clamping, and accessibility analyses”, Robotics and Computer-Integrated Manufacturing, Vol. 14,pp. 1-15.
    [8] 邱至意,「3D曲面模型網格化之研究」(2010),碩士論文,國立中央大學,機械工程研究所,桃園市。
    [9] Y Zheng and Chee-Meng Chew (2010), “A geometric approach to automated fixture layout design,” Computer-Aided Design, Vol. 42, pp. 202-212.
    [10] Y. Zheng, M.C. Lin and D. Manocha (2011), “Efficient simplex comptation for fixture layout design,” Computer-Aided Design, Vol. 43, pp. 1307-1318
    [11] Chantal Wentink, A Frank Van Der Stappen and Mark Overmars (1996), “Algorithms for Fixture Design,” Algorithms for Robotic Motion and Manipulation, Editors: J-P. Laumond and M.H. Overmars, A K Peters/CRC Press.
    [12] Y. Wu, Y. Rong, W. Ma and S.R. LeClair (1998), “Automated modular Fixture planning: Geometric analysis,” Robotics and Computer-Integrated Manufacturing, Vol. 14, pp. 17-26.
    [13] H. Asada (1985), “Kinematic analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures,” IEEE Journal on Robotics and Automation, Vol. 1, pp. 86-94.

    QR CODE