簡易檢索 / 詳目顯示

研究生: 鍾岱軒
Tai-Hsuan Chung
論文名稱: Sn-9Zn 和 Sn-0.7Cu 銲料與 Cu-Ti 合金 (C1990) 之間的界面反應
Interfacial Reactions between Sn-9Zn & Sn-0.7Cu Solders and Cu-Ti Alloy (C1990)
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 朱瑾
Jinn P. Chu
高振宏
Chen-Robert Kao
陳志銘
Chih-Ming Chen
莊鑫毅
Hsin-Yi Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 78
中文關鍵詞: Sn-9ZnSn-0.7Cu金屬間化合物活化能
外文關鍵詞: Sn-9Zn, Sn-0.7Cu, IMC, Activation energy
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銲料在電子構裝中扮演著相當重要的角色,主要使用於電子元件與其電路板之間的連接,並能傳遞其訊息。因先前文獻多半單獨研究無鉛銲料與 Cu 金屬之界面反應,為了與文獻研究相比較以及兼顧前瞻性,本研究致力於Sn-0.7 wt.% Cu (SC) 和 Sn-9 wt.% Zn (SZ) 兩種無鉛銲料與 Cu-Ti 合金 (C1990) 之相關反應,另外添加 Ti 增加其合金的可銲性,藉此探討界面中生成金屬間化合物 (intermetallic compound,IMC) 的機制與生長動力學。
    利用掃描電子顯微鏡 (SEM) 、能量散射能譜儀 (EDS) 等顯微儀器觀察界面處所生成介金屬相的顯微結構。 Cu-Ti 合金 (C1990) 分別與無鉛銲料 Sn-9Zn 及 Sn-0.7Cu 控制溫度在 240 ˚C 、 255 ˚C 和 270 ˚C 下進行反應,以及提調控時間參數 0.5 、 1 、 2 、 4 和 5 小時,實驗結果發現 SZ/C1990 界面中會生成 CuZn5 和 Cu5Zn8 ,且 SC/C1990 界面中皆生成 Cu6Sn5 ,所生成相的厚度皆隨著反應時間和溫度的增加而變厚,兩種無鉛銲料與 Cu-Ti 合金進行的反應皆符合拋物線定律,表明本實驗研究的 IMC 反應受擴散控制。最後可推算出 SZ/C1990 所得的活化能為 33 kJ/mole ,而 SC/C1990 反應所得的活化能為 93 kJ/mole 。


    The solders play an important part in the electronic construction. It mainly connect with electronic component and circuit board, and transfer it message. The researches talked about interfacial reactions between Sn-0.7Cu (SC) and Sn-9Zn (SZ) solders and Cu react. To compare the previous literature and the researches are forward-looking. This researches are Sn-0.7Cu (SC) and Sn-9Zn (SZ) solders and Cu-Ti alloy (C1990) react. In order to improve the alloy reliability, the Ti add into the copper-based substrates. The report explore the interface are generated mechanism of the IMCs (intermetallic compounds) and growth kinetics.
    This experiment microscopically observes interfacial IMC phases by means of various microstructure experiment with microscopy instruments such as SEM (Scanning Electron Microscope), EDS (Energy Dispersive Spectrometer), and etc. Cu-Ti alloy and Sn-9Zn, Sn-0.7Cu solders react at 240, 255, and 270 °C for 0.5, 1, 2, 4, and 5 h. The results discover SZ/C1990 interface are generated CuZn5 and Cu5Zn8. SC/C1990 interface is all generated Cu6Sn5. The thickness of the IMCs layer increase when the reaction time and temperature increase. The two lead-free solders and Cu-Ti alloy reactions conform the parabolic law. The reaction of the IMC are diffusion control. Finally the activation energy of SZ/C1990 is calculated to be 33 kJ/mole, and the activation energy of SC/C1990 is calculated to be 93 kJ/mole.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 壹、 前言 1 貳、 文獻回顧 2 2. 1 電子構裝技術 2 2. 2 無鉛銲料 3 2. 2. 1 無鉛銲料介紹 3 2. 2. 2 純錫 (Sn) 3 2. 2. 3 錫-銅 (Sn-Cu) 4 2. 2. 4 錫-鋅 (Sn-Zn) 5 2. 2. 5 銅-鋅 (Cu-Zn) 6 2. 3 助銲劑 7 2. 4 擴散控制反應與界面控制反應 8 2. 4. 1 擴散控制反應 9 2. 4. 2 界面控制反應 10 2. 5 界面反應相關文獻 11 2. 5. 1 錫-鋅 (Sn-Zn)/銅 (Cu) 之界面反應 11 2. 5. 2 錫-銅 (Sn-Cu)/銅 (Cu) 之界面反應 13 參、 實驗材料與方法 15 3. 1 藥品 15 3. 2 儀器 16 3. 2. 1 光學顯微鏡 (OM) 17 3. 2. 2 桌上型掃描式電子顯微鏡 (SEM) 17 3. 2. 3 能量散射能譜儀 (EDS) 18 3. 2. 4 場發射電子微探儀 (FE-EPMA) 18 3. 3 銲料製備 19 3. 4 基材製備 20 3. 5 實驗方法 20 3. 5. 1 界面反應實驗 20 3. 5. 2 金相處理 21 3. 6 分析方法 21 肆、 結果與討論 24 4. 1 C1990 基材 24 4. 2 Sn-9Zn 銲料 25 4. 3 Sn-9Zn 銲料與 C1990 基材界面反應 26 4. 4 Sn-9Zn 銲料與 C1990 基材生長動力學 39 4. 5 Sn-0.7Cu 銲料 48 4. 6 Sn-0.7Cu 銲料與 C1990 基材界面反應 49 4. 7 Sn-0.7Cu 銲料與 C1990 基材生長動力學 55 伍、 結論 60 陸、 參考文獻 61

    1 T. Laurila, V. Vuorinen, J. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Mater. Sci. Eng., R 49, 1-60 (2005).
    2 Y. W. Yen, W. T. Chou, Y. Tseng, C. Lee, C. L. Hsu, “Investigation of dissolution behavior of metallic substrates and intermetallic compound in molten lead-free solders”, J. Electron. Mater. 37, 73-83 (2008).
    3 X. Zhang, Y. Zhan, Q. Guo, G. Zhang, J. Hu, “The 473 K isothermal section of the Cu–Ti–Sn ternary system”, J. Alloys Compd. 480, 382-385 (2009).
    4 Y. W. Yen, D. W. Liaw, K. D. Chen, H. Chen, “Interfacial reactions of Sn-58Bi and Sn-9Zn lead-free solders with Au/Ni/SUS304 multilayer substrate”, J. Electron. Mater. 39, 2412-2417 (2010).
    5 N. Zhao, Y. Zhong, M. L. Huang, W. Dong, H. T. Ma, Y. P. Wang, “In situ study on interfacial reactions of Cu/Sn–9Zn/Cu solder joints under temperature gradient”, J. Alloys Compd. 682, 1-6 (2016).
    6 S. K. Seo, S. K. Kang, D. Y. Shih, H. M. Lee, “An investigation of microstructure and microhardness of Sn-Cu and Sn-Ag solders as functions of alloy composition and cooling rate”, J. Electron. Mater. 38, 257-265 (2009).
    7 M. Abtew, G. Selvaduray, “Lead-free solders in microelectronics”, Mater. Sci. Eng., R 27, 95-141 (2000).
    8 K. Zeng, K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. Eng., R 38, 55-105 (2002).
    9 E. S. Freitas, W. R. Osório, J. E. Spinelli, A. Garcia, “Mechanical and corrosion resistances of a Sn–0.7 wt.% Cu lead-free solder alloy”, Microelectron. Reliab. 54, 1392-1400 (2014).
    10 G. Li, Y. Shi, H. Hao, Z. Xia, Y. Lei, F. Guo, “Effect of phosphorus element on the comprehensive properties of Sn–Cu lead-free solder”, J. Alloys Compd. 491, 382-385 (2010).
    11 A. K. Gain, L. Zhang, “Growth nature of in-situ Cu6Sn5-phase and their influence on creep and damping characteristics of Sn-Cu material under high-temperature and humidity”, Microelectron. Reliab. 87, 278-285 (2018).
    12 M. Jabłońska, T. Maciąg, M. Nowak, T. Rzychoń, M. Czerny, K. Kowalczyk, “Thermal and structural analysis of high-tin bronze of chemical composition corresponding to the composition of the singing bowl”, J. Therm. Anal. Calorim. 137, 735-741 (2019).
    13 C. Y. Lee, J. W. Yoon, Y. J. Kim, S. B. Jung, “Interfacial reactions and joint reliability of Sn–9Zn solder on Cu or electrolytic Au/Ni/Cu BGA substrate”, Microelectron. Eng. 82, 561-568 (2005).
    14 A. Sharif, Y. C. Chan, “Effect of substrate metallization on interfacial reactions and reliability of Sn–Zn–Bi solder joints”, Microelectron. Eng. 84, 328-335 (2007).
    15 I. T. L. Moura, C. L. M. Silva, N. Cheung, P. R. Goulart, A. Garcia, J. E. Spinelli, “Cellular to dendritic transition during transient solidification of a eutectic Sn–0.7 wt% Cu solder alloy”, Mater. Chem. Phys. 132, 203-209 (2012).
    16 X. Chen, M. Li, X. X. Ren, A. M. Hu, D. L. Mao, “Effect of small additions of alloying elements on the properties of Sn-Zn eutectic alloy”, J. Electron. Mater. 35, 1734-1739 (2006).
    17 M. L. Huang, C. M. L. Wu, J. K. L. Lai, L. Wang, F. G. Wang, “Lead free solder alloys Sn-Zn and Sn-Sb prepared by mechanical alloying”, J. Mater. Sci.: Mater. Electron. 11, 57-65 (2000).

    18 R. Juškėnas, V. Karpavičienė, V. Pakštas, A. Selskis, V. Kapočius, “Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with d-mannitol”, J. Electroanal. Chem. 602, 237-244 (2007).
    19 A. H. Sulaymon, S. A. M. Mohammed, A. H. Abbar, “Characterization and electrochemical preparation of thin films of binary heavy metals (Cu-Pb,Cu-Cd,Cu-Zn) from simulated chloride wastewaters”, Int. J. Electrochem. Sci. 9, 6328-6351 (2014).
    20 M. F. Arenas, M. He, V. L. Acoff, “Effect of flux on the wetting characteristics of SnAg, SnCu, SnAgBi, and SnAgCu lead-free solders on copper substrates”, J. Electron. Mater. 35, 1530-1536 (2006).
    21 M. J. Rizvi, H. Lu, C. Bailey, “Modeling the diffusion of solid copper into liquid solder alloys”, Thin Solid Films 517, 1686-1689 (2009).
    22 M. M. A. Mohd Salleh, S. D. McDonald, C. M. Gourlay, H. Yasuda, K. Nogita, “Suppression of Cu6Sn5 in TiO2 reinforced solder joints after multiple reflow cycles”, Mater. Des. 108, 418-428 (2016).
    23 Y. C. Huang, S. W. Chen, W. Gierlotka, C. H. Chang, J. C. Wu, “Dissolution and interfacial reactions of Fe in molten Sn-Cu and Sn-Pb solders”, J. Mater. Res. 22, 2924-2929 (2007).
    24 H. Sueyoshi, H. Odo, S. Mizokuchi, S. Abe, K. Saikusa, “Consumption of soldering iron by Pb-free solder”, Mater. Trans. 47, 1221-1226 (2006).
    25 H. Z. Huang, X. Q. Wei, L. Zhou, “Growth kinetics of intermetallic compounds at the interface of liquid Sn-9Zn/Cu”, Adv. Mater. Res. 233, 2323-2327 (2011).
    26 R. Mayappan, Z. A. Ahmad, “Effect of Bi addition on the activation energy for the growth of Cu5Zn8 intermetallic in the Sn–Zn lead-free solder”, Intermetallics 18, 730-735 (2010).

    27 X. F. Zhang, J. D. Guo, J. K. Shang, “Abnormal polarity effect of electromigration on intermetallic compound formation in Sn–9Zn solder interconnect”, Scr. Mater. 57, 513-516 (2007).
    28 J. Hu, A. Hu, M. Li, D. Mao, “Depressing effect of 0.1 wt.% Cr addition into Sn–9Zn solder alloy on the intermetallic growth with Cu substrate during isothermal aging”, Mater. Charact. 61, 355-361 (2010).
    29 C. M. Chen, C. H. Chen, C. P. Lin, W. C. Su, “Morphological evolution of the reaction product at the Sn-9wt.% Zn/thin-film Cu interface”, J. Electron. Mater. 37, 1605-1610 (2008).
    30 J. W. Yoon, S. B. Jung, “Reliability studies of Sn–9Zn/Cu solder joints with aging treatment”, J. Alloys Compd. 407, 141-149 (2006).
    31 H. Nishikawa, J. Y. Piao, T. Takemoto, “Interfacial reaction between Sn-0.7Cu (-Ni) solder and Cu substrate”, J. Electron. Mater. 35, 1127-1132 (2006).
    32 K. S. Bae, S. J. Kim, “Microstructure and adhesion properties of Sn–0.7Cu/Cu solder joints”, J. Mater. Res. 17, 743-746 (2002).
    33 S. Tian, S. Li, J. Zhou, F. Xue, R. Cao, F. Wang, “Effect of indium addition on interfacial IMC growth and bending properties of eutectic Sn–0.7Cu solder joints”, J. Mater. Sci.: Mater. Electron. 28, 16120-16132 (2017).
    34 H. T. Ma, J. Wang, L. Qu, L. L. An, L. Y. Gu, M. L. Huang, “The study on the rapidly-solidified Sn-0.7Cu lead-free solders and the interface reactions with Cu substrate”, 13th International Conference on Electronic Packaging Technology & High Density Packaging. 361-365 (2012).
    35 M. F. Arenas, V. L. Acoff, “Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates”, J. Electron. Mater. 33, 1452 (2004).

    36 D. Q. Yu, H. P. Xie, L. Wang, “Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate”, J. Alloys Compd. 385, 119-125 (2004).
    37 W. Chen, S. Xue, H. Wang, J. Wang, Z. Han, “Solderability and intermetallic compounds formation of Sn-9Zn-xAg lead-free solders wetted on Cu substrate”, Rare Met. 28, 656 (2009).
    38 Y. H. Hu, S. B. Xue, H. Ye, Z. X. Xiao, L. L. Gao, G. Zeng, “Reliability studies of Sn–9Zn/Cu and Sn–9Zn–0.06 Nd/Cu joints with aging treatment”, Mater. Des. 34, 768-775 (2012).
    39 T. Gancarz, “The effect of aging temperature on the phenomena occurring at the interface of solder SnZn with Na on Cu substrate”, Mater. Lett. 171, 187-190 (2016).
    40 C. Y. Chou, S. W. Chen, Y. S. Chang, “Interfacial reactions in the Sn–9Zn–(xCu)/Cu and Sn–9Zn–(xCu)/Ni couples”, J. Mater. Res. 21, 1849-1856 (2006).
    41 C. W. Huang, K. L. Lin, “Interfacial reactions of lead-free Sn-Zn based solders on Cu and Cu plated electroless Ni-P/Au layer under aging at 150 degrees C”, J. Mater. Res. 19, 3560-3568 (2004).
    42 S. C. Yang, C. E. Ho, C. W. Chang, C. R. Kao, “Effect of Zn addition on the interfacial reactions between Cu and lead-free solders”, MRS Online Proc. Libr. Arch. 968 (2006).
    43 Y. C. Chan, M. Y. Chiu, T. H. Chuang, “Intermetallic compounds formed during the soldering reactions of eutectic Sn-9Zn with Cu and Ni substrates”, Zeitschrift für Metallkunde 93, 95-98 (2002).
    44 C. Y. Chou, S. W. Chen, “Phase equilibria of the Sn–Zn–Cu ternary system”, Acta Mater. 54, 2393-2400 (2006).

    45 H. M. Lee, S. W. Yoon, B. J. Lee, “Thermodynamic prediction of interface phases at Cu/solder joints”, J. Electron. Mater. 27, 1161-1166 (1998).
    46 J. Y. Wang, C. F. Lin, C. M. Chen, “Retarding the Cu5Zn8 phase fracture at the Sn–9 wt.% Zn/Cu interface”, Scr. Mater. 64, 633-636 (2011).
    47 L. Liu, P. Wu, W. Zhou, “Effects of Cu on the interfacial reactions between Sn–8Zn–3Bi–xCu solders and Cu substrate”, Microelectron. Reliab. 54, 259-264 (2014).
    48 C. M. Chen, C. H. Chen, “Interfacial reactions between eutectic SnZn solder and bulk or thin-film Cu substrates”, J. Electron. Mater. 36, 1363-1371 (2007).
    49 S. P. Yu, M. H. Hon, M. C. Wang, “The adhesion strength of a lead-free solder hot-dipped on copper substrate”, J. Electron. Mater. 29, 237-243 (2000).
    50 I. Shohji, T. Nakamura, F. Mori, S. Fujiuchi, “Interface reaction and mechanical properties of lead-free Sn-Zn alloy/Cu joints”, Mater. Trans. 43, 1797-1801 (2002).
    51 H. K. Kim, H. K. Liou, K. N. Tu, “Three‐dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu”, Appl. Phys. Lett. 66, 2337-2339 (1995).
    52 A. A. Liu, H. K. Kim, K. N. Tu, P. A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys. 80, 2774-2780 (1996).
    53 A. D. Laksono, J. S. Chang, J. Yan, Y. W. Yen, “Interfacial reaction between Sn and Cu-Ti alloy (C1990HP)”, Mater. Sci. Forum 964, 263-269 (2019).
    54 K. N. Tu, K. Zeng, “Tin–lead (SnPb) solder reaction in flip chip technology”, Mater. Sci. Eng., R 34, 1-58 (2001).
    55 N. Mookam, P. Tunthawiroon, K. Kanlayasiri, “Effects of copper content in Sn-based solder on the intermetallic phase formation and growth during soldering”, IOP Conf. Ser. : Mater. Sci. Eng. 361, 012008 (2018).
    56 J. Shen, Y. Pu, D. Wu, Q. Tang, M. Zhao, “Effects of minor Bi, Ni on the wetting properties, microstructures, and shear properties of Sn–0.7 Cu lead-free solder joints”, J. Mater. Sci.: Mater. Electron. 26, 1572-1580 (2015).
    57 S. Tian, J. Zhou, F. Xue, R. Cao, F. Wang, “Microstructure, interfacial reactions and mechanical properties of Co/Sn/Co and Cu/Sn/Cu joints produced by transient liquid phase bonding”, J. Mater. Sci.: Mater. Electron. 29, 16388-16400 (2018).
    58 I. Kawakatsu, T. Osawa, H. Yamaguchi, “On the growth of alloy layer between solid copper and liquid tin”, Trans. Jpn. Inst. Met. 13, 436-443 (1972).
    59 J. Madeni, S. Liu, T. Siewert, “Intermetallics formation and growth at the interface of tin-based solder alloys and copper substrates”, 2nd International Brazing and Soldering Conference. 9 (2003).
    60 J. H. Bang, “Characteristics of interfacial reaction between Sn–Cu solder alloys with trace elements and Cu substrates”, 85-96 (2019).
    61 Y. Tang, G. Y. Li, D. Q. Chen, Y. C. Pan, “Influence of TiO2 nanoparticles on IMC growth in Sn–3.0Ag–0.5Cu–xTiO2 solder joints during isothermal aging process”, J. Mater. Sci.: Mater. Electron. 25, 981-991 (2014).

    無法下載圖示 全文公開日期 2025/07/20 (校內網路)
    全文公開日期 2025/07/20 (校外網路)
    全文公開日期 2025/07/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE