簡易檢索 / 詳目顯示

研究生: 李晉安
Chin-An Lee
論文名稱: 合成聚乙二醇-兩性離子嵌段共聚物並應用於固態高分子電解質
Synthesis of Polyethylene Glycol-Zwitterionic Block Copolymers for Solid Polymer Electrolyte
指導教授: 羅承慈
Chen-Tsyr Lo
口試委員: 林律吟
李文亞
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 鏈轉移試劑 兩性離子嵌段共聚物可逆加成-斷裂鏈轉移反應鋰離子電池固態高分子電解質
外文關鍵詞: chain transfer agent , zwitterion, block copolymer, reversible addition-fragmentation chain transfer polymerization, lithium-ion battery, solid polymer electrolyte
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中合成一系列的嵌段共聚物 PEG-b-PSBMA,該結構中包含了聚乙二醇 (PEG) 嵌段,以及不同比例之兩性離子 (PSBMA) 嵌段,將其應用在鋰離子電池的固態高分子電解質之中。研究首先合成出鏈轉移試劑 CPADB,並與聚乙二醇單甲醚 (MPEG) 經由酯化反應,形成高分子鏈轉移試劑 PEG-CPADB,接著引入不同當量之兩性離子單體 SBMA,透過可逆加成-斷裂鏈轉移聚合反應 (RAFT),形成聚乙二醇與兩性離子之嵌段共聚物,PEG-b-PSBMA,最後將其混摻於聚環氧乙烷 (PEO) 中,製備出固態高分子電解質。通過1H-NMR 與 FT-IR 光譜儀進行化合物及高分子之結構鑑定,同時也用以確認嵌段共聚物中兩性離子的嵌段比例,而 GPC 將確認高分子之分子量分佈集中情形,熱性質則藉由 TGA 和 DSC 進行測量,最後利用電化學量測探討固態高分子電解質之各種電化學性質,如: 離子電導率、線性掃描伏安法、充放電表現與鋰離子遷移數,其中加入 PEG90-b-PSBMA¬40 於 PEO 基質時 (嵌段共聚物與 PEO的重量比為 1 : 100),在80 °C下,固態高分子電解質具有 5.43 × 10-4 S/cm 之離子電導率,證實兩性離子的獨特結構能夠加強電解質內鋰鹽之解離能力,以及促進鋰離子於電池內部之遷移能力,此外 PEO電解質在添入 PEG-b-PSBMA ,並經首次充放電循環後,皆可展現出約 100 % 之磷酸鋰鐵正極理論電容值,而 PEG90-b-PSBMA30 添入 PEO所形成的固態高分子電解質,其鋰離子遷移數的數值可達 0.211。本研究結果顯示加入 PEG-b-PSBMA於固態高分子電解質後,能顯著改善電池之電化學性能,並提供新的想法探討兩性離子對於改善電池性能之影響。


    This study aims to synthesize a series of block-copolymers, PEG-b-PSBMA, consisting of PEG and zwitterionic segments with different ratios, and apply it in the solid polymer electrolyte (SPE) of lithium-ion batteries. The synthesis begins by preparing a chain transfer agent, CPADB, which reacts with methoxy polyethylene glycol (MPEG) via esterification to obtain macro-chain transfer agent, PEG-CPADB. Subsequently, RAFT polymerization is mediated by CPADB to copolymerize the zwitterion monomer, SBMA, with PEG-CPADB, resulting in the formation of the block-copolymer PEG-b-PSBMA. Finally, the copolymer is blended into polyethylene oxide (PEO) matrix to form the SPE. The structural confirmation of the compounds and segment ratios of the block-copolymer are analyzed by using 1H-NMR and FT-IR spectroscopy, while the molecular weight distribution is determined through GPC. Thermal stability of SPE is tested by TGA and DSC. The electrochemical properties of the SPE, including ionic conductivity, LSV, charge-discharge performance, and lithium-ion transference number, are evaluated using electrochemical measurements. At 80°C, solid polymer electrolyte showed the ionic conductivity with the value 5.43 × 10-4 S/cm, when blended PEG90-b-PSBMA40 into PEO matrix (The weight ratio of block copolymer and PEO is 1:100). It can be confirmed that the unique structure of zwitterion can enhance the dissociation of lithium salts inside the electrolyte and facilitate the migration of lithium ions within the battery. In addition, PEO blended with block copolymers can possess approximately 100% of the theoretical capacity of LiFePO4 cathode after first charging-discharging measurement. Value of lithium transference number can reach 0.211, when PEO matrix blended with PEG90-b-PSBMA30. The results of this study showed that blending PEG-b-PSBMA to the solid polymer electrolyte improve the electrochemical performance of the battery, and also provide more ideas to investigate associating effects of zwitterions on battery performance.

    摘要 i Abstract ii 目錄 iv 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 鋰離子電池 4 2.1.1 鋰離子電池工作原理 4 2.2 電極 6 2.2.1 正極材料 (Cathode) 6 2.2.1.1 層狀材料 6 2.2.1.2 尖晶石結構 7 2.2.1.3 橄欖石結構 8 2.2.2 負極材料 (Anode) 9 2.2.2.1 鋰金屬 9 2.2.2.2 石墨 9 2.2.3 負極失效 10 2.2.3.1 鋰枝晶之生成 10 2.2.3.2 SEI 層之形成 10 2.3 電解質 11 2.3.1 液態電解質 11 2.3.2 固態電解質 12 2.3.2.1 無機固態電解質 13 2.3.2.2 固態高分子電解質 13 2.3.2.2.1 高分子傳遞鋰離子機制 16 2.4 可逆失活自由基聚合反應 (RDRP) 17 2.4.1 原子轉移自由基聚合 (ATRP) 17 2.4.2 可逆加成-斷裂鏈轉移聚合 (RAFT) 18 2.5 兩性離子 20 2.5.1 兩性離子材料 20 2.5.2 兩性離子的性質 21 2.5.3 兩性離子於電解質中之應用 23 第三章 實驗方法 26 3.1 實驗樣品命名 26 3.2 實驗藥品 27 3.3 實驗步驟 29 3.3.1 鏈轉移試劑 4-Cyanopentanoic Acid Dithiobenzoate (CPADB) 合成 29 3.3.2 高分子鏈轉移試劑 PEG-CPADB 合成 31 3.3.3 PEG-b-PSBMA 兩性離子嵌段共聚物合成 31 3.3.4 聚環氧乙烷固態高分子電解質溶液製備 32 3.3.5 含兩性離子嵌段共聚物之固態高分子電解質溶液置備 32 3.3.6 固態高分子電解質薄膜製備 32 3.3.7 鋰離子鈕扣電池組裝 32 3.4 實驗儀器 34 3.4.1 傅立葉紅外線光譜儀 (FT-IR) 34 3.4.2 核磁共振光譜儀 (1H-NMR) 35 3.4.3 凝膠滲透層析儀 (GPC) 35 3.4.4 熱重分析儀 (TGA) 36 3.4.5微差式掃描卡計 (DSC) 36 3.4.6 電化學分析儀 37 第四章 結果與討論 38 4.1 化合物與高分子結構鑑定 38 4.1.1 1H-NMR 分析 38 4.1.1.1 4-Cyanopentanoic Acid Dithiobenzoate (CPADB) 結構鑑定 38 4.1.1.2 高分子鏈轉移試劑 PEG-CPADB 結構鑑定 39 4.1.1.3 兩性離子嵌段共聚物 PEG-b-PSBMA 結構鑑定 40 4.1.2 嵌段共聚物 GPC 分析 43 4.1.3 紅外線光譜 FT-IR分析 44 4.1.3.1 CPADB FT-IR 分析 44 4.1.3.2 PEG-CPADB FT-IR 分析 45 4.1.3.3 PEG-b-PSBMA FT-IR 分析 46 4.2 熱性質分析 48 4.2.1 嵌段共聚物與固態高分子電解質熱重分析 (TGA) 48 4.2.2 固態高分子電解質熱差掃描分析 (DSC) 51 4.3 電化學分析 52 4.3.1 電化學阻抗分析 (EIS) 52 4.3.2 線性掃描伏安法 (LSV) 58 4.3.3 首次充放電曲線 59 4.3.4 鋰離子遷移數 61 第五章 結論 66 第六章 未來規劃 68 參考文獻 70

    參考文獻
    [1] Bashir, T., et al., A review of the energy storage aspects of chemical elements for lithium-ion based batteries. Energy Materials, 2022. 1(2).
    [2] Ghiji, M., et al., A Review of Lithium-Ion Battery Fire Suppression. Energies, 2020. 13(19).
    [3] Kaya, M., State-of-the-art lithium-ion battery recycling technologies. Circular Economy, 2022. 1(2).
    [4] Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
    [5] Bazito, F.F. and R.M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials. Journal of the Brazilian Chemical Society, 2006. 17: p. 627-642.
    [6] Xia, H., et al., Electrochemical Behavior and Li Diffusion Study of LiCoO2 Thin Film Electrodes Prepared by PLD, 2007. Google Scholar There is no corresponding record for this reference, 2021.
    [7] Zhang, T., et al., Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Progress in Natural Science: Materials International, 2013. 23(3): p. 256-272.
    [8] Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
    [9] Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014. 7(2): p. 513-537.
    [10] Xu, Z., et al., Chemical Strain of Graphite-Based Anode during Lithiation and Delithiation at Various Temperatures. Research (Wash D C), 2021. 2021: p. 9842391.
    [11] Meng, X., et al., Internal failure of anode materials for lithium batteries — A critical review. Green Energy & Environment, 2020. 5(1): p. 22-36.
    [12] Heiskanen, S.K., J. Kim, and B.L. Lucht, Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule, 2019. 3(10): p. 2322-2333.
    [13] Hui, C.-y., et al., Flexible Energy Storage System—An Introductory Review of Textile-Based Flexible Supercapacitors. Processes, 2019. 7(12).
    [14] Nowak, S. and M. Winter, The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes. Molecules, 2017. 22(3).
    [15] Lee, Y., et al., Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. Journal of Power Sources, 2016. 320: p. 49-58.
    [16] Lian, P.-J., et al., Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. Journal of Materials Chemistry A, 2019. 7(36): p. 20540-20557.
    [17] Zhang, J., L. Huang, and X. Gu, Failure mechanism of solid-state electrolyte Li10GeP2S12 in a moist atmosphere: a first-principles study. Materials Advances, 2022. 3(7): p. 3143-3150.
    [18] Gurung, A., et al., A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustainable Energy & Fuels, 2019. 3(12): p. 3279-3309.
    [19] Ye, T., L. Li, and Y. Zhang, Recent Progress in Solid Electrolytes for Energy Storage Devices. Advanced Functional Materials, 2020. 30(29).
    [20] Kim, H.-K. and V. Srinivasan, Status and Targets for Polymer-Based Solid-State Batteries for Electric Vehicle Applications. Journal of The Electrochemical Society, 2020. 167(13).
    [21] Li, R., et al., Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path. Journal of Energy Chemistry, 2022. 64: p. 395-403.
    [22] Li, J., et al., Development of solid polymer electrolytes for solid-state lithium battery applications. Materials Today Energy, 2024. 43.
    [23] Liu, Y., et al., Recent Development in Topological Polymer Electrolytes for Rechargeable Lithium Batteries. Adv Sci (Weinh), 2023. 10(15): p. e2206978.
    [24] Shin, I., et al., Poly(ethylene glycol) (PEG)-crosslinked poly(vinyl pyridine)–PEG–poly(vinyl pyridine)-based triblock copolymers prepared by RAFT polymerization as novel gel polymer electrolytes. Polymer Chemistry, 2018. 9(42): p. 5190-5199.
    [25] Huang, B., et al., A copolyether with pendant cyclic carbonate segment for PEO-based solid polymer electrolyte. Journal of Power Sources, 2023. 570.
    [26] Zhao, B., et al., Enhancing the ionic conductivity in a composite polymer electrolyte with ceramic nanoparticles anchored to charged polymer brushes. Chinese Chemical Letters, 2020. 31(3): p. 831-835.
    [27] Aziz, S.B., et al., A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 2018. 3(1): p. 1-17.
    [28] Xue, Z., D. He, and X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(38): p. 19218-19253.
    [29] Thakur, V., et al., Recent advances in nanocellulose processing, functionalization and applications: a review. Materials Advances, 2021. 2(6): p. 1872-1895.
    [30] Xia, L., et al., Antifouling Membranes for Bioelectrochemistry Applications, in Microbial Electrochemical Technology. 2019. p. 195-224.
    [31] Perrier, S., 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules, 2017. 50(19): p. 7433-7447.
    [32] Ohno, H., M. Yoshizawa-Fujita, and Y. Kohno, Design and properties of functional zwitterions derived from ionic liquids. Phys Chem Chem Phys, 2018. 20(16): p. 10978-10991.
    [33] Chiao, Y.-H., et al., Application of Zwitterions in Forward Osmosis: A Short Review. Polymers, 2021. 13(4).
    [34] Du, H. and X. Qian, The hydration properties of carboxybetaine zwitterion brushes. J Comput Chem, 2016. 37(10): p. 877-85.
    [35] Ye, L., et al., Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability. ACS Appl Mater Interfaces, 2016. 8(24): p. 15710-23.
    [36] Georgiev, G.S., et al., Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules, 2006. 7(4): p. 1329-1334.
    [37] Liu, M., et al., High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane. Journal of Alloys and Compounds, 2018. 742: p. 619-628.
    [38] Min, H.J., et al., Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors. Chemical Engineering Journal, 2021. 412.
    [39] Woo, H.-S., et al., Ionic liquid-based gel polymer electrolyte containing zwitterion for lithium-oxygen batteries. Electrochimica Acta, 2020. 345.
    [40] Li, G., et al., Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes. Energy Storage Materials, 2020. 24: p. 574-578.
    [41] Choi, W., et al., Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 1-13.
    [42] Mitsukami, Y., et al., Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules, 2001. 34(7): p. 2248-2256.
    [43] Xiang, T., et al., Ionic strength-and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. New Journal of Chemistry, 2018. 42(7): p. 5323-5333.
    [44] Lalani, R. and L. Liu, Synthesis, characterization, and electrospinning of zwitterionic poly(sulfobetaine methacrylate). Polymer, 2011. 52(23): p. 5344-5354.
    [45] Singh, N.K., M.L. Verma, and M. Minakshi, PEO nanocomposite polymer electrolyte for solid state symmetric capacitors. Bulletin of Materials Science, 2015. 38: p. 1577-1588.
    [46] Li, J., et al., Competitive Li(+) Coordination in Ionogel Electrolytes for Enhanced Li-Ion Transport Kinetics. Adv Sci (Weinh), 2023. 10(23): p. e2300226.
    [47] Zhu, K., Y. Liu, and J. Liu, A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Adv., 2014. 4(80): p. 42278-42284.
    [48] Judez, X., et al., Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell. J Phys Chem Lett, 2017. 8(9): p. 1956-1960.
    [49] Li, Z.H., et al., Effect of zwitterionic salt on the electrochemical properties of a solid polymer electrolyte with high temperature stability for lithium ion batteries. Electrochimica Acta, 2010. 56(2): p. 804-809.
    [50] Lee, J.-Y., et al., Tough Polymer Electrolyte with an Intrinsically Stabilized Interface with Li Metal for All-Solid-State Lithium-Ion Batteries. The Journal of Physical Chemistry C, 2021. 125(48): p. 26339-26347.
    [51] Zeng, F., et al., Three-Dimensional Porous Alginate Fiber Membrane Reinforced PEO-Based Solid Polymer Electrolyte for Safe and High-Performance Lithium Ion Batteries. ACS Appl Mater Interfaces, 2020. 12(39): p. 43805-43812.
    [52] Zhu, L., et al., Toward high performance solid‐state lithium‐ion battery with a promising PEO / PPC blend solid polymer electrolyte. International Journal of Energy Research, 2020. 44(13): p. 10168-10178.
    [53] Lyu, W., G. He, and T. Liu, PEO-LITFSI-SiO2-SN System Promotes the Application of Polymer Electrolytes in All-Solid-State Lithium-ion Batteries. ChemistryOpen, 2020. 9(6): p. 713-718.
    [54] Liu, C., et al., In Situ Construction of Zwitterionic Polymer Electrolytes with Synergistic Cation–Anion Regulation Functions for Lithium Metal Batteries. Advanced Functional Materials, 2023. 34(1).

    無法下載圖示 全文公開日期 2026/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2034/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE