簡易檢索 / 詳目顯示

研究生: 黃坤鍾
Kun-Chuang Huang
論文名稱: 磁軸承控制系統研製
Development of Magnetic Bearing Control Systems
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 林長華
Chang-Hua Lin
陳良瑞
Liang-Rui Chen
劉傳聖
Chuan-Sheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 107
中文關鍵詞: 交流型磁軸承馬達主動式磁軸承馬達三相換流器
外文關鍵詞: Ac magnetic bearing motor, Active magnetic bearing motor, three-phase inverter
相關次數: 點閱:397下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製無機械接觸式磁軸承馬達之控制系統。磁軸承馬達使用磁力將轉軸控制於氣隙中心,有效減少馬達運轉時產生的摩擦損耗。本文磁軸承馬達結構為12 槽8 極雙繞組結構,分別為馬達驅動繞組及磁軸承繞組。馬達驅動繞組搭配電磁轉矩控制策略,控制磁軸承馬達輸出電磁轉矩。磁軸承繞組搭配間隙控制策略,控制磁軸承馬達轉軸在氣隙中的位置,使轉軸於原點運轉。間隙控制使用渦電流式間隙感測裝置PU-14,偵測X 軸、Y 軸徑向間隙。間隙控制迴路使用比例-積分-微分控制器,微分控制器可以有效增加轉軸運動系統之阻尼,使轉軸運動更易於穩定。
    本文之控制器使用Texas Instrument 公司所生產數位訊號處理器(TMS320F28075),並透過C 語言撰寫馬達驅動繞組的電磁轉矩控制策略及磁軸承繞組的間隙控制策略。驅動電路使用兩組三相三臂式換流器,加上閘極驅動電路及周邊回授電路,完成磁軸承控制系統的實體製作。文中採用Matlab/Simulink 模擬軟體分析電磁轉矩控制策略及間隙控制策略之可行性,並依此作為實驗時的重要參考。實測結果方面,電磁轉矩控制策略輸出轉矩為0.6N-m。徑向的間隙控制實測,軸承外加干擾力最大為49N,在200rpm 時,X、Y 軸最大間隙穩誤差值在+40μm~-220μm ,符合磁軸承馬達實際應用之需求。


    The purpose of this paper is to develop a control system for a contactless magnetic bearing motor. The magnetic bearing motor uses magnetic force to control the rotating shaft in the center of the air gap,which effectively reduces the frictional losses caused by the motor operation. The structure of this magnetic bearing motor is 12 slots and 8 poles double winding structure, which are motor drive winding and magnetic bearing winding respectively. The motor drive winding is
    matched with a torque control strategy to control the output torque of the magnetic bearing motor. The magnetic bearing winding is matched with a gap control strategy to control the position of the magnetic bearing motor shaft in the air gap, so that the shaft rotates at the origin. The gap control uses the eddy current gap sensing device PU-14 to detect the X-axis and Y-axis radial gaps. The gap control loop uses a proportional-integral-derivative controller. The derivative controller can effectively increase the damping of the shaft motion system and make the shaft motion more stable.

    The control system in this paper uses a digital signal processor (TMS320F28075) produced by Texas Instrument, and the torque control strategy of the motor drive winding and the gap control strategy of the magnetic bearing winding use C language. The drive circuit uses two groups of three-phase three-arm inverters, plus a gate drive circuit and peripheral feedback circuits to complete the manufacture of the magnetic bearing control system. In this paper, Matlab/Simulink simulation software is used to analyze the feasibility of torque control strategy and gap control strategy, which is regarded as an important reference in the experiment. In terms of actual measurement results, the torque command of the torque control is 0.6 Nm. Measurement of radial gap control, when the test condition is that the maximum external interference force of the bearing is 49 N and the rotor speed is 200rpm, the steady-state error of the maximum
    gap between the X and Y axis is between +40μm~-220μm. It meets the requirements of actual application of magnetic bearing motor.

    摘要 ...............................................I Abstract ..........................................II 誌謝 ..............................................III 目錄 ...............................................IV 符號索引 ...........................................VII 圖表索引 ...........................................XVI 第一章 緒論 ........................................1 1-1 研究動機與目的 .................................1 1-2 文獻探討 .......................................1 1-2-1 磁軸承的分類 ........... .....................1 1-2-2 磁軸承馬達的原理及控制策略 ....................2 1-3 系統架構及特色 .................................2 1-4 本文大綱 .......................................4 第二章 磁軸承馬達的數學模式及參數量測 ................5 2-1 前言 ..........................................5 2-2 馬達驅動繞組的接線規劃及模式 .....................6 2-2-1 馬達驅動繞組的接線規劃 ........................6 2-2-2 馬達驅動繞組的模式 ............................7 2-3 磁軸承繞組的接線規劃及模式 ......................10 2-3-1 磁軸承繞組的接線規劃 ..........................10 2-3-2 磁軸承繞組的模式 ..............................12 2-4 電路參數的量測 ..................................15 2-5 轉子磁場角位置的量測及校正 .......................16 2-5-1 馬達驅動繞組的轉子磁埸角位置校正 ...............18 2-5-2 磁軸承繞組的轉子磁埸角位置校正..................18 2-6 結語 ...........................................19 第三章 馬達驅動繞組電磁轉矩控制及磁軸承繞組間隙控制策略 ..20 3-1 前言 ...........................................20 3-2 馬達驅動繞組的電磁轉矩控制策略 ...................20 3-3 磁軸承繞組的間隙控制策略 .........................22 3-4 磁軸承繞組變頻器的電壓空間向量脈波寬度調變控制 .....26 3-5 馬達驅動繞組的電磁轉矩控制模擬 ...................28 3-6 磁軸承繞組的間隙控制模擬 .........................32 3-7 結語 ...........................................42 第四章 實體製作與實測 ...............................43 4-1 前言 ...........................................43 4-2 系統硬體電路架構 ................................43 4-2-1 數位控制器核心電路 ............................43 4-2-2 閘極驅動電路及功率級電路 .......................48 4-2-3 電流回授電路 ..................................49 4-2-4 直流電壓回授電路 ..............................50 4-2-5 間隙感測器的接線與校正 .........................52 4-3 軟體程式的流程說明 ...............................53 4-3-1 主程式流程規劃 .................................53 4-3-2 馬達驅動繞組的電磁轉矩控制程式流程規劃 ......... .55 4-3-3 磁軸承繞組的間隙控制程式流程規劃 .................57 4-4 實測結果 .........................................59 4-4-1 馬達驅動繞組的電磁轉矩控制實測結果 ...............59 4-4-2 磁軸承繞組的間隙控制實測結果.....................63 4-5 結語 ............................................76 第五章 結論與建議 ....................................77 5-1 結論 ............................................77 5-2 建議 ............................................78 參考文獻 .............................................79

    [1] 張藏謙,“磁浮軸承基於牛頓法之迭代前饋不平衡干擾補償”,國立清華大學動力機械工程研究所碩士論文,民國108 年。
    [2] 楊介仁,“五自由度三極磁浮軸承系統之實驗驗證”,國立中正大學機械工程研究所碩士論文,民國107 年。
    [3] 鐘明吉,“主動式磁浮軸承系統之動態分析與控制”,國立成功大學機械工程研究所博士論文,民國89 年。
    [4] 黃彥能,“電動磁浮軸承的設計與應用”,國立中正大學機械工
    程研究所碩士論文,民國107 年。
    [5] Qinan Li, P. Boesch, M. Haefliger, J. W. Kolar and Dehong Xu, "Basic
    characteristics of a 4kW permanent-magnet type bearingless slice motor
    for centrifugal pump system," 2008 International Conference on Electrical
    Machines and Systems, Wuhan, pp. 3037-3042, 2008.
    [6] M. T. Bartholet, S. Silber, T. Nussbaumer and J. W. Kolar, "Performance
    Investigation of Two-, Three- and Four-Phase Bearingless Slice Motor
    Configurations," 2007 7th International Conference on Power Electronics
    and Drive Systems, Bangkok, pp. 9-16, 2007.
    [7] B. Warberger, R. Kaelin, T. Nussbaumer and J. W. Kolar, "50-N·m 2500-
    W Bearingless Motor for High-Purity Pharmaceutical Mixing," in IEEE
    Transactions on Industrial Electronics, vol. 59, no. 5, pp. 2236-2247, May
    2012.
    [8] T. Reichert, T. Nussbaumer, W. Gruber and J. W. Kolar, "Design of a novel
    bearingless permanent magnet motor for bioreactor applications," 2009
    35th Annual Conference of IEEE Industrial Electronics, Porto, pp. 1086-
    1091, 2009.
    [9] T. Reichert, T. Nussbaumer, W. Gruber and J. W. Kolar, "Bearingless
    Permanent-Magnet Motor with 4/12 Slot-Pole Ratio for Bioreactor Stirring
    Applications," in IEEE/ASME Transactions on Mechatronics, vol. 16, no.
    3, pp. 431-439, June 2011.
    [10] F. Zurcher, T. Nussbaumer, W. Gruber and J. W. Kolar, "Design and
    Development of a 26-Pole and 24-Slot Bearingless Motor," in IEEE
    Transactions on Magnetics, vol. 45, no. 10, pp. 4594-4597, Oct. 2009.
    [11] P. Karutz, T. Nussbaumer, W. Gruber and J. W. Kolar, "Novel Magnetically
    Levitated Two-Level Motor," in IEEE/ASME Transactions on
    Mechatronics, vol. 13, no. 6, pp. 658-668, Dec. 2008.
    [12] J. Asama, T. Fukao, A. Chiba, A. Rahman and T. Oiwa, "A design
    consideration of a novel bearingless disk motor for artificial hearts," 2009
    IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009,
    pp. 1693-1699.
    [13] J. Asama, T. Tatara, T. Oiwa and A. Chiba, "A two-axis actively regulated
    consequent-pole bearingless motor with wide magnetic gaps," 2013 IEEE
    Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 1541-
    1546.
    [14] J. Asama, T. Tatara, T. Oiwa and A. Chiba, "Suspension performance of a
    two-DOF actively positioned consequent-pole bearingless motor with a
    wide magnetic gap," 2015 IEEE International Electric Machines & Drives
    Conference (IEMDC), Coeur d'Alene, ID, pp. 786-791, 2015.
    [15] P. Karutz, T. Nussbaumer, W. Gruber and J. W. Kolar, "Acceleration-
    Performance Optimization for Motors With Large Air Gaps," in IEEE
    Transactions on Industrial Electronics, vol. 57, no. 1, pp. 52-60, Jan. 2010.
    [16] J. Amemiya, A. Chiba, D. G. Dorrell and T. Fukao, "Basic characteristics
    of a consequent-pole-type bearingless motor," in IEEE Transactions on
    Magnetics, vol. 41, no. 1, pp. 82-89, Jan. 2005.
    [17] H. Sugimoto and A. Chiba, "Stability Consideration of Magnetic
    Suspension in Two-Axis Actively Positioned Bearingless Motor With
    Collocation Problem," in IEEE Transactions on Industry Applications, vol.
    50, no. 1, pp. 338-345, Jan.-Feb. 2014.
    [18] M. Ooshima, "A magnetic suspension control strategy by 3-phase inverters
    in bearingless brushless DC motors," 2009 IEEE Power & Energy Society
    General Meeting, Calgary, AB, pp. 1-5, 2009.
    [19] K. Inagaki, A. Chiba, M. A. Rahman and T. Fukao, "Performance
    characteristics of inset-type permanent magnet bearingless motor drives,"
    2000 IEEE Power Engineering Society Winter Meeting. Conference
    Proceedings (Cat. No.00CH37077), Singapore, pp. 202-207 vol.1, 2000.
    [20] S. Kobayashi, M. Ooshima and M. N. Uddin, "A radial position control
    method of bearingless motor based on d-q axis current control," 2011 IEEE
    Industry Applications Society Annual Meeting, Orlando, FL, pp. 1-8, 2011.
    [21] M. Ooshima, S. Kobayashi and M. N. Uddin, "Magnetic levitation tests of
    a bearingless motor based on d-q axis current control," 2012 IEEE Industry
    Applications Society Annual Meeting, Las Vegas, NV, 2012, pp. 1-7.
    [22] M. Ooshima, T. Karasawa and M. N. Uddin, "Stabilized control strategy
    under loaded conditions in a bearingless motor based on d-q axis current
    control," 2013 IEEE Industry Applications Society Annual Meeting, Lake
    Buena Vista, FL, pp. 1-7, 2013.
    [23] M. Ooshima and Y. Kumakura, "Stabilized suspension control considering
    armature reaction in a d-q axis current control bearingless motor," 2014
    International Power Electronics Conference (IPEC-Hiroshima 2014 -
    ECCE ASIA), Hiroshima, pp. 1715-1720, 2014.
    [24] M. Ooshima, A. Kobayashi and T. Narita, "Stabilized suspension control
    strategy at failure of a motor section in a d-q axis current control
    bearingless motor," 2015 IEEE Industry Applications Society Annual
    Meeting, Addison, TX, pp. 1-7, 2015.
    [25] T. Reichert, T. Nussbaumer and J. W. Kolar, "Bearingless 300-W PMSM
    for Bioreactor Mixing," in IEEE Transactions on Industrial Electronics,
    vol. 59, no. 3, pp. 1376-1388, March 2012.
    [26] F. Zürcher, T. Nussbaumer and J. W. Kolar, "Principles of magnetic
    levitation force and motor torque generation by superposition of harmonics
    in bearingless brushless motors," 2009 35th Annual Conference of IEEE
    Industrial Electronics, Porto, 2009, pp. 1246-1251.
    [27] M. Ooshima, "Analyses of Rotational Torque and Suspension Force in a
    Permanent Magnet Synchronous Bearingless Motor with Short-pitch
    Winding," 2007 IEEE Power Engineering Society General Meeting, Tampa,
    FL, pp. 1-7, 2007.
    [28] T. Wellerdieck, T. Nussbaumer and J. W. Kolar, "Angle-Sensorless Zeroand
    Low-Speed Control of Bearingless Machines," in IEEE Transactions
    on Magnetics, vol. 52, no. 7, pp. 1-4, Art no. 8105704, July 2016.
    [29] T. Reichert, T. Nussbaumer and J. W. Kolar, "Investigation of Exterior
    Rotor Bearingless Motor Topologies for High-Quality Mixing
    Applications," in IEEE Transactions on Industry Applications, vol. 48, no.
    6, pp. 2206-2216, Nov.-Dec. 2012.
    [30] H. Grabner, S. Silber and W. Amrhein, "Feedback control of a novel
    bearingless torque motor using an extended FOC method for PMSMs,"
    2013 IEEE International Conference on Industrial Technology (ICIT),
    Cape Town, 2013, pp. 325-330.
    [31] W. Gruber, T. Nussbaumer, H. Grabner and W. Amrhein, "Wide Air Gap
    and Large-Scale Bearingless Segment Motor With Six Stator Elements," in
    IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 2438-2441, June 2010.
    [32] M. Nakagawa et al., "Optimization of Stator Design in a Consequent-Pole
    Type Bearingless Motor Considering Magnetic Suspension
    Characteristics," in IEEE Transactions on Magnetics, vol. 42, no. 10, pp.
    3422-3424, Oct. 2006.
    [33] M. Ooshima, "Winding Arrangement to Increase Suspension Force in
    Bearingless Motors with Brushless DC Structure," IECON 2007 - 33rd
    Annual Conference of the IEEE Industrial Electronics Society, Taipei, pp.
    181-186, 2007.
    [34] M. Ooshima and M. A. Rahman, "Control strategy of magnetic suspension
    and performances of a bearingless BLDC motor," 2011 IEEE International
    Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, pp.
    71-76, 2011.
    [35] M. Ooshima and C. Takeuchi, "Magnetic suspension performance of a
    bearingless brushless DC motor for small liquid pumps," 2009
    International Conference on Electrical Machines and Systems, Tokyo, pp.
    1-4, 2009.
    [36] M. Takemoto, S. Iwasaki, H. Miyazaki, A. Chiba and T. Fukao,
    "Experimental evaluation of magnetic suspension characteristics in a 5-axis
    active control type bearingless motor without a thrust disk for wide-gap
    condition," 2009 IEEE Energy Conversion Congress and Exposition, San
    Jose, CA, 2009, pp. 2362-2367.
    [37] 黃仲欽,電機控制教學講義,民國一百零八年。

    無法下載圖示 全文公開日期 2031/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE