簡易檢索 / 詳目顯示

研究生: 陳柏丞
Bo-Cheng Chen
論文名稱: 都會區低矮建物之液化風險與損害評估
Seismic Liquefaction Risk and Damage Assessment of Low- rise Building in Urban City
指導教授: 盧之偉
Chih-Wei Lu
口試委員: 葛宇甯
Louis Ge
盧志杰
Chih-Chieh Lu
郭安妮
On-Lei Annie Kwok
鄭世豪
Shih-Hao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 113
中文關鍵詞: 土壤液化離心機沉陷量傾角傾斜方向評估公式
外文關鍵詞: DBLEAVSE, Simplified method, Tilt angle, Tilt direction
相關次數: 點閱:477下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自0206美濃地震在台南安南區發生的液化災害後,國家始大力推動鑽探佈孔作業,以提高液化潛勢地圖精度並產製中級液化潛勢地圖,同時進一步執行液化風險評估工項,以提供防災工程決策的參考依據,能減少後續可能發生液化災害所造成的經濟損失。本研究內容將依現今都會區高密度之建物分布型態,探討低矮樓層之淺基礎互制條件下的液化行為。首先回顧過去文獻透過現地調查、離心機試驗、數模分析中研究的成果,並針對液化引致基礎之「沉陷量」、「傾斜量」、「傾斜方向」等研究進一步做探討,並藉由過去文獻所提出之間距比(rp)參數探討,及應用數值分析工具有限元素法之有效應力模式DBLEAVSE做為主要分析之工具。為驗證該數模工具使用之材料參數可靠性,本研究利用與京都大學合作之離心機試驗結果加以驗證。再應用數模工具建立兩相鄰基礎配置的模型,將一系列分析結果進行探討以提出評估兩基礎之液化行為方法等。最後,以本研究建立一套建物之損害評估分析同時結合液化風險評估程序,並將本研究區域做為本次研究成果的應用展示範例。


Since the liquefaction disaster occurred in the Annan District of Tainan in the 0206 Meinong earthquake, the Taiwan government has promoted drilling and borehole placement to improve the accuracy of liquefaction potential maps and develop intermediate-level liquefaction potential maps, further more to avoid economic losses caused by liquefaction disasters. Liquefaction risk assessment of the urban cities has been promoted. This research discussed the liquefaction behavior of low-rise buildings and shallow foundations based on the distribution patterns of high-density buildings in today's metropolitan areas. At first, presented a review of the research results of past literature through field surveys, centrifuge tests, and numerical analysis, and further discuss the "settlement", "tilt" and "tilt direction" of the foundation caused by liquefaction. The approximate ratio (rp) parameter was proposed for discussion, and an effective stress program DBLEAVES of the finite element numerical analysis tool was used. To verify the feasibility of the material parameters used by the numerical model, simulating the centrifuge test results by Kyoto University was used to verify the model and then establish a model of a configuration of two adjacent foundations for finding a relationship of settlement and tilt. Finallty, the relational formula produced by the research is substituted into the damage assessment analysis of the building and combined with process of liquefaction risk assessment. This study used a demonstration area to demonstrate proposed methodology by this study.

論文摘要 I 致謝 III 圖目錄 VI 表目錄 IX 主要參數符號表 X 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 2 第2章 文獻回顧 4 2.1 土壤液化原理 4 2.2 現地液化調查案例 5 2.3 基礎液化行為分析研究 8 2.3.1 離心機既振動台分析 9 2.3.2 數模之基礎沉陷量 12 2.3.3 基礎傾斜行為 15 2.3.4 建物傾斜方向性 18 2.4 小結 21 第3章 離心機試驗與數值分析驗證 22 3.1 地工試驗內容 22 3.1.1 試驗材料 23 3.1.2 試體箱及模型配置 24 3.2 試驗結果與探討 25 3.3 數模分析驗證 27 3.3.1 數值方法 27 3.3.2 砂土模型理論 28 3.3.3 離心機試驗-數值驗證 31 第4章 淺基礎間距互制之液化行為 38 4.1 分析模型要點及架構 38 4.1.1 分析要點 38 4.1.2 分析模型架構 39 4.2 數值分析結果探討 44 4.2.1 超額孔隙水壓行為分析探討 45 4.2.2 加速度行為分析探討 56 4.2.3 兩相鄰基礎液化行為之簡易機制探討 66 4.3 液化引致基礎沉陷、傾斜 69 4.3.1 液化致基礎沉陷探討 69 4.3.2 液化致基礎傾斜探討 81 4.3.3 兩相鄰基礎傾斜方向探討 88 4.4 分析總結 95 第5章 研究區域液化潛勢風險評估展示及應用 97 5.1 緣起 97 5.1.1 研究區域-人文地質背景 97 5.2 液化風險評估及損害度評估 98 5.2.1 分析資料 98 5.2.2 分析步驟及方法 101 5.3 預期成果展示 106 第6章 結論與建議 108 參考文獻 111

[1]. A. Ishikawa, Y.G. Zhoub, Y. Shamotoab, H. Mano, Y.M. Chen, D.S. Ling, (2015). “Observation of post-liquefaction progressive failure of shallow foundation in centrifuge model tests.” Soils and Foundations, 55(6), 1501-1511. https://doi.org/10.1016/j.sandf.2015.10.014
[2]. Alexis A. Acacio, Yoshikazu Kobayashi, Ikuo Towhata, R. T. Bautista and Kenji Ishihara, (2001). “Subsidence of building foundation resting upon liquefied subsoil: case studies and assessment.” Soils and Foundations, 41(6), 111-128.
[3]. B. Mehrzad, Y. Jafarian, C.J. Lee, A.H.Haddad, (2018). “Centrifuge study into the effect of liquefaction extent on permanent settlement and seismic response of shallow foundations.” soils and foundations, 58(1), 228-240.
[4]. B. Yei, GuanlinYe, Feng Zhang, Atsushi Yashima, (2007). “Experiment and numerical simulation of repeated liquefaction-consolidation of sand.” Soils and Foundations, 47(3), 547-558. http://dx.doi.org/10.3208/sandf.47.547 .
[5]. C. P Hayden, Joshua D. Zupan, J.D. Bray, Jacquelyn D. Allmond, Bruce L. Kuttert, (2015). “Centrifuge Tests of Adjacent Mat-Supported Buildings Affected by Liquefaction.” Journal of geotechnical and geoenvironmental engineering, 141(3), 04014118.http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001253
[6]. C.W. Lu (2017). A Simplified Calculation Method for Liquefaction-Induced Settlement of Shallow Foundation.” Journal of Earthquake Engineering, 21(8), 1385–1405. DOI: 10.1080/13632469.2016.1264327.
[7]. Chih-Wei Lu, Min-Chien Chu, Louis Ge, Kai-Siang Peng, (2021). “Estimation of settlement after soil liquefaction for structures built on shallow foundations.” Soil Dynamics and Earthquake Engineering, 129, 105916.
[8]. Gonzalo Barrios, Kentaro Uemura, Naotaka Kikkawa, Kazuya Itoh, Tam Larkin, Rolando Orense and Nawawi Chouw, (2021). “Dynamic response of stand-alone and adjacent footing on saturated sand.” Soil Dynamics and Earthquake Engineering, 143, 106584. https://doi.org/10.1016/j.soildyn.2021.106584 .
[9]. Hadi Shahir and Ali Pak, (2010). “Estimating liquefaction-induced settlement of shallow foundations by numerical approach.” Computers and Geotechnics, 37(3), 267–279.
[10]. J. D. Zupan et al.(2013). Seismic Performance Assessment in Dense Urban Environments. (CMMI-0830331).
[11]. J.D. Bertalot, A.J.Brennan and F.A. Villalobos, (2013). “Influence of bearing pressure on liquefaction-induced settlement of shallow foundations.” Geotechnique, 63(5), 391–399. http://dx.doi.org/10.1680/geot.11.P.040
[12]. J.D. Bray and J. Macedo, (2017). 6th Ishihara lecture: simplified procedure for estimating liquefaction-induced building settlement. Soil Dynamics Earthquake Engng, 102, 215–231.
[13]. J.D. Bray and R. Sancio, (2006). “Assessment of the Liquefaction Susceptibility of Fine-Grained Soils.” Journal of Geotechnical and Geoenvironmental Engineering, 132(9), 1165-1177. DOI:10.1061/(ASCE)1090-0241(2006)132:9(1165)
[14]. J.D. Bray et al. (2000). “Damage patterns and foundation performance in Adapazari.” Earthquake Spectra, 16, 163–189. https://doi.org/10.1193/1.1586152.
[15]. K. Ishihara and M. Yoshimine (1992). "Evaluation of settlements in sand deposits following liquefaction during earthquakes", Soils and Foundations, 32(1), 173-188.https://doi.org/10.3208/sandf1972.32.173
[16]. K.Kassas O. Adamidis and I. Anastasopoulos, (2021). “Shallow strip foundations subjected to earthquake-induced soil liquefaction: Validation, modelling uncertainties, and boundary effects.” Soil Dynamics and Earthquake Engineering, 147, 106719. https://doi.org/10.1016/j.soildyn.2021.106719 .
[17]. Kohji Tokimatsu, Kazuya Hino, Hiroko Suzuki, Kyoko Ohno, Shuji Tamura, Yasutsugu Suzuki, (2019). “Liquefaction-induced settlement and tilting of buildings with shallow foundations based on field and laboratory observation” Soil Dynamics and Earthquake Engineering, 124, 268-279. https://doi.org/10.1016/j.soildyn.2018.04.054 .
[18]. Orestis Adamidis and S. P. Gopal Madabhushi. (2022). “Rocking response of structures with shallow foundations on thin liquefiable layers.” Géotechnique, 72(2), 127–145. https://doi.org/10.1680/jgeot.19.P.077 .
[19]. P. Kirkwood and S. Dashti. (2018). “A centrifuge study of seismic structure-soil-structure interaction on liquefiable ground and the implications for structural performance.” Earthquake Spectra, 34(3), 1113–1134. https://doi.org/10.1193/052417EQS095M .
[20]. S. Dashti, J.D. Bray, Juan M. Pestana, Michael Riemer and D.Wilson, (2010). “Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms.” J. Geotech. Geoenviron, 136(7), 918–929. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000306,
[21]. S. Yasuda and K. Ishikawa (2018). “Appropriate measures to prevent the liquefaction-induced inclination of existing houses.” Soil Dynamics and Earthquake Engineering, 115, 652-662. https://doi.org/10.1016/j.soildyn.2018.07.019 .
[22]. S. Yasuda and Y. Ariyama (2008). “Study on the mechanism of the liquefaction-induced differential settlement of timber houses occurred during the 2000 tottoriken-seibu earthquake.” The 14th World Conference on Earthquake Engineering, Beijing, China.
[23]. T. Adachi and S. Iwai, (1992). “Settlement and inclination of reinforced concrete buildings in Dagupan City due to liquefaction during the 1990 Philippine earthquake.” Earthquake enginnering, tenth world conference, Balkema, Rotterdam.
[24]. Y. Jafarian, B. Mehrzad, C.J. Lee, A.H. Haddad, (2017). “Centrifuge modeling of seismic foundation-soil-foundation interaction on liquefiable sand.” Soil dynamics and earthquake engineering, 97, 184-204. http://dx.doi.org/10.1016/j.soildyn.2017.03.019 .
[25]. Y. Tsukamoto, K. Ishihara, S. Sawada and S. Fujiwaraet, (2012). “Settlement of Rigid Circular Foundations during Seismic Shaking in Shaking Table Tests.” International Journal of Geomechanics, 12(4), 462-470.
[26]. Y.W. Hwang, Jenny Ramirez, Shideh Dashti, Peter Kirkwood, Abbie Liel, Guido Camata, Massimo Petracca, (2021). “A Probabilistic Predictive Model for Foundation Settlement on Liquefiable Soils Improved with Ground Densification.” Journal of geotechnical and geoenvironmental engineering, 147(8), 04021063. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002546.
[27]. Yannis K. Chaloulos, Amalia Giannakou, Vasileios Drosos, Panagiota Tasiopoulou, Jacob Chacko, Sjoerd de Wit, (2020). “Liquefaction-induced settlements of residential buildings subjected to induced earthquakes.” Soil dynamics and earthquake engineering, 129, 105880.
[28]. 張鋒。(2007)。(計算土力學)。北京:人民交通出版社。
[29]. 門前史孝et al. (2019)。“複雑な地盤堆積環境における火山灰質土の液状化挙動に関する数値解析.” 第 54 回地盤工学研究発表会, 琦玉縣, 日本.
[30]. 陳貞羽(2020)。淺基礎液化沉陷快評法在各種地下水位條件之應用。國立高雄科技大學營建工程系碩士論文,高雄市。

無法下載圖示 全文公開日期 2025/09/06 (校內網路)
全文公開日期 2025/09/06 (校外網路)
全文公開日期 2025/09/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE