研究生: |
杜晏頤 TU,YEN-YI |
---|---|
論文名稱: |
應用於小鼠生理訊號與人體方位角偵測之24-GHz雷達感測器研製 Development of 24-GHz Radar Sensors Vital Signs of Laboratory Mice and Azimuth Angle of Human Target |
指導教授: |
曾昭雄
Chao-Hsiung Tseng |
口試委員: |
陳筱青
Hsiao-Chin Chen 瞿大雄 Tah-Hsiung Chu 張嘉展 Chia-Chan Chang |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 小鼠 、生理訊號 、方位角 、連續波雷達 、單脈衝雷達 |
外文關鍵詞: | laboratory mice, vital signs, azimuth angle, continuous wave (CW) radar, monopulse radar |
相關次數: | 點閱:554 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以連續波雷達原理研製兩款24-GHz雷達感測器,分別應用於實驗小鼠生理訊號及人體方位角偵測。感測器皆包含射頻電路、基頻電路以及數位訊號處理,其雷達系統架構設計、實現方式與量測結果皆於本論文中詳細討論。在應用於量測實驗小鼠生理訊號中,本論文首先對時域訊號進行直流準位校準與相位解調變處理,並使用快速傅立葉轉換將時域訊號轉換為頻域訊號觀察不同健康程度實驗小鼠之波形,實驗結果初步能以頻譜訊號成份分別出不同的健康程度。而應用於量測人體方位角中,本論文使用180°耦合器將接收之訊號分成和與差訊號,使用差動放大器整合差動訊號並根據相位解調變得到的相位計算待測物與天線之相對方位角,由實驗結果可得知,量測人體參考方位角+−30°內的誤差為−3.51°至+4.51°。
This thesis presents two 24-GHz continuous wave (CW) radar sensors to detect vital signs of laboratory mice and the azimuth angle of human target. The developed radar sensors include radio frequency circuits, baseband circuits, and digital signal processing. For sensing vital signs of laboratory mice, the DC offset calibration and phase demodulation are performed to obtain time-domain signals. Then the fast Fourier transform (FFT) is used to convert the time-domain signals into the frequency-domain signals. According to the components of the frequency spectrum, the different physiological conditions of laboratory mice can be classified by experimental results. For the other application, the radar configuration is modified to the monopulse radar system. It is implemented by a 1T2R transceiver chip with a 180° coupler to measure the azimuth angle of human target. The differential amplifiers are used to transfer the differential signals of the sum and difference ports into single-end signals. Then phase demodulation results are employed to calculate the azimuth angle in the range of+-30°, the measurement error is within the range of −3.51° to +4.51° as compared with the theoretical values.
[1] [Online]. Available: http://www.kmuh.org.tw/www/kmcj/data/8512/ke8512-1.htm
[2] [Online]. Available: https://news.pts.org.tw/article/444516
[3] L. Salman and G. Beathard, “Interventional nephrology: Physical examination as a tool for surveillance for the hemodialysis arteriovenous access,” Clin. J. Amer. Soc. Nephrol., vol. 8, pp. 1220–1227, Jul. 2013. [Online]. Available:
https://cjasn.asnjournals.org/content/8/7/1220
[4] M. C. Tang, C. M. Liao, F. K. Wang, and T. S. Horng, “Noncontact pulse transit time measurement using a single-frequency continuous-wave radar,” in IEEE MTT-S Int. Microwave Symp. Dig., Philadelphia, PA, USA, Jun. 2018, pp. 1409–1412.
[5] H. Zhao, X. Gu, H. Hong, Y. Li, X. Zhu, and C. Li, “Non-contact beat-tobeat blood pressure measurement using continuous wave Doppler radar,” in IEEE MTT-S Int. Microwave Symp. Dig., Philadelphia, PA, USA, Jun. 2018, pp. 1413–1415.
[6] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, pp. 2046–2060, May 2013.
[7] B. K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Techn., vol. 55, pp. 1073–1079, May 2007.
[8] Y.-S. Su, C.-C. Chang, J.-J. Guo, and S.-F. Chang, “2-D wireless human subjects positioning system based on respiration detections,” in IEEE MTT-S Int. Microw. Symp. Dig., Montreal, QC, Canada, Jun. 2012, pp. 1–3.
[9] C.-H. Tseng, C.-H. Chao, "Noncontact vital-sign radar sensor using metamaterial-based scanning leaky-wave antenna," in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1–3.
[10] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, Li J.-Y, and C.-C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 696–704, Jan. 2013.
[11] 曾子容,非接觸式射頻血壓感測器研發,國立臺灣科技大學電子工程學系碩士論文,民國108年。
[12] MEDIATEK, Link 7697, [Online]. Available:
http://labs.mediatek.com/zh-tw/platform/linkit-7697.
[13] Infineon, BGT24LTR11N16, [Online]. Available:
https://www.infineon.com/cms/en/product/sensor/radar-image-sensors/radar-sensors/radar-sensors-for-consumer-and-iot/bgt24ltr11n16/
[14] Analog Devices, ADF4108, [Online]. Available:
https://www.analog.com/en/products/adf4108.html
[15] Analog Devices, ADI PLL Int-N v7 software, [Online]. Available:
https://ez.analog.com/rf/f/discussions/75892/adi-pll-int-n-v7-software
[16] Analog Devices, ADIsimPLL REQUEST FOR SOFTWARE, [Online]. Available:
https://form.analog.com/form_pages/rfcomms/adisimpll.aspx
[17] CTS Corporation, Model 520, [Online]. Available:
https://www.ctscorp.com/wp-content/uploads/2015/11/008-0371-0.pdf
[18] Texas Instruments, LM358, [Online]. Available:
http://www.ti.com/product/LM358
[19] Mathworks, fitcircle.m, [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/15060-fitcircle-m
[20] Infineon, BGT24MTR12, [Online]. Available:
https://www.infineon.com/cms/en/product/sensor/radar-image-sensors/radar-sensors/radar-sensors-for-consumer-and-iot/bgt24mtr12/
[21] MICROWAVES101.COM, Hybrid (3 dB) couplers, [Online]. Available:
https://www.microwaves101.com/encyclopedias/hybrid-couplers
[22] Keysight, PathWave Advanced Design System (ADS), [Online]. Available:
https://www.keysight.com/tw/zh/products/software/pathwave-design-software/pathwave-advanced-design-system.html
[23] 唐牧群,考慮身體移動與姿勢效應之生理訊號雷達研究與發展,國立中山大學電機工程學系博士論文,民國109年。