簡易檢索 / 詳目顯示

研究生: 張志明
Truong Chi Minh
論文名稱: 開發自動化微量樣品收集/點樣系統搭配液相層析儀與基質輔助雷射脫附飛行時間式質譜法分析濫用藥物
The Development of a Microliter Automatic Fraction Collector/Automatic Spot Preparation System for LC-MS and LC-MALDI-MS of Illicit Drugs
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 林鼎晸
Ding-Zheng Lin
陳珮珊
Pai-Shan Chen
劉沂欣
Yi-Hsin Liu
葉 怡均
Yi-Chun Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 71
外文關鍵詞: Automatic Fraction Collector, Automatic Spot Preparation System, Drugs analysis, Narcotics, Illicit drugs, UHPLC, MS, MALDI MS
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Currently, the Covid-19 pandemic has led to a rise in illicit substances production, trade and consumption. These substances are mixtures of many street drugs that are difficult to detect and quantify. In forensic laboratories, drug abuse can be detected using the subject’s body fluid samples (blood, urine, saliva). For further research, An Ultra High-Performance Liquid Chromatography (UHPLC) system can isolate these substances for individual examination. Liquid Chromatography-Mass Spectrometry (LC-MS) and Liquid Chromatography Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (LC-MALDI-MS) can be used to detect and quantify these drugs. Because these samples contain only a small amount of drug concentration (50 ppb at 25 μL), the amount of samples from the chromatographic process are in the range of 3-30 μL. Automatic collecting machines are necessary to collect, separate and prepare these samples from the UHPLC process for MS and MALDI MS experiments. Therefore, these devices must successfully inject microliter-level samples into containers with short fractioning intervals, high repeatability and customizable collection time. This thesis presents the development of a collection platform for two automatic system designs: Automatic Fraction Collector (AFC) and Automatic Spot Preparation System (ASPS). The AFC can fraction samples into 40 Eppendorf PCR tubes with a minimum fractioning resolution of 3 μL in 6 seconds (30 μL/min). The ASPS system can generate sample droplets on the MALDI plate (200 wells) with a spot volume of 4-8 μL in 8 seconds (30 μL/min). These systems can be integrated directly into liquid chromatography devices to simplify the collection and fractioning process. These system improve the accuracy of the fractioning process, reduce extra steps, and eliminate human errors.

    ABSTRACT I ACKNOWLEDGEMENT II TABLE OF CONTENTS III LIST OF TABLES V LIST OF FIGURES VI CHAPTER 1: INTRODUCTION 1 1.1 Motivation 1 1.2 Drug use detection technologies 2 1.3 UHPLC fractioning and MALDI MS preparation requirements 3 1.4 Microliter volume collection method 5 1.5 Thesis outline 6 CHAPTER 2: LITERATURE REVIEW ON AFC AND ASPS SYSTEMS 7 2.1 Literature review 7 2.2 Sample injection methods 10 2.2.1 PCR tube fractioning methods 10 2.2.2 MALDI target plate spotting methods 13 CHAPTER 3: SYSTEM COMPONENTS, DESIGN, AND OPERATION PRINCIPLE 15 3.1 Interaction and display components 16 3.2 Control components and circuit connections 17 3.3 AFC System component and operation program 23 3.1.2 Mechanical components 23 3.1.4 AFC system’s user interface 27 3.1.5 AFC system operation principle 29 3.4 MALDI ASPS components and operation program 33 3.2.1 Mechanical components and design 33 3.2.2 ASPS user interface system ............................................................................................................................................................35 3.2.3 ASPS operation principles ................................................................................................................................................................37 3.5 Motor Speed and Timing ............................................................................................................................................................................................41 3.3.1 AFC system operation time (fractioning time interval) ........................................................................43 3.3.2 ASPS system operation time (spotting fraction time) ..............................................................................44 CHAPTER 4: METHODOLOGY ..................................................................................................................................................................................................45 4.1 Chemicals preparation, chromatogram, detection parameters ............................................................................45 4.2 AFC system efficiency ....................................................................................................................................................................................................47 4.2.1 Fractioning efficiency experiment ........................................................................................................................................47 4.2.2 System collection time experiment ......................................................................................................................................49 4.2.3 Microliter-level fractioning experiment ........................................................................................................................50 CHAPTER 5: RESULT AND DISCUSSION ..............................................................................................................................................................52 5.1 AFC system efficiency experiment result ..........................................................................................................................................52 5.1.1 Fractioning efficiency experiment ........................................................................................................................................52 5.1.2 System collection time experiment ......................................................................................................................................54 5.1.3 Microliter level fractioning experiment ........................................................................................................................56 CHAPTER 6: CONCLUSION ............................................................................................................................................................................................................57 REFERENCES ............................................................................................................................................................................................................................................................59

    [1]
    UNODC, "Drug Trafficking & Cultivation," United Nations Office on Drug and Crime, [Online]. Available: https://dataunodc.un.org/dp-drug-seizures.
    [2]
    UNODC, "COVID-19 AND THE DRUG SUPPLY CHAIN," United Nations Office on Drugs and Crime, 2020.
    [3]
    UNODC, "UNODC World Drug Report 2022 highlights trends on cannabis post-legalization, environmental impacts of illicit drugs, and drug use among women and youth," 2022. [Online]. Available: https://www.unodc.org/unodc/frontpage/2022/June/unodc-world-drug-report-2022-highlights-trends-on-cannabis-post-legalization--environmental-impacts-of-illicit-drugs--and-drug-use-among-women-and-youth.html.
    [4]
    Louisa Degenhardt, Wayne Hall, "Extent of illicit drug use and dependence, and their contribution to the global burden of disease," The Lancet, vol. 379, no. 9810, pp. 55-70, 2012.
    [5]
    Shringika Soni, Utkarsh Jain, Donald H. Burke, Nidhi Chauhan, "Recent trends and emerging strategies for aptasensing technologies for illicit drugs detection," Journal of Electroanalytical Chemistry, vol. 910, no. 116128, 2022.
    [6]
    Camilla Mattiuzzi, Giuseppe Lippi, "Worldwide epidemiology of alcohol and drugs abuse," European Journal of Internal Medicine, vol. 70, pp. e27-e28, 2019.
    [7]
    NIDA, "https://nida.nih.gov/," National Institute on Drug Abuse, 1999-2020. [Online]. Available: https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates.
    [8]
    Alan G Ryder, "Surface enhanced Raman scattering for narcotic detection and applications to chemical biology," Current Opinion in Chemical Biology, vol. 9, no. 5, pp. 489-493, 2005.
    [9]
    Anca Florea, Todd Cowen, Sergey Piletsky, Karolien De Wael , "Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands," The Royal Society of Chemistry, vol. 144, no. 4639, 2019.
    [10]
    Kerstin M.-C. Hans, Matthias Muller, Tigran Petrosyan, Markus W. Sigrist, "Infrared detection of cocaine and street cocaine in saliva with a one-step extraction," Analytical Methods, vol. 3, no. 6, pp. 666-673, 2014.
    [11]
    Denise V.M. Sousa, Fabiano V.Pereira, Clésia C. Nascentes, Juliane S. Moreira, Victor H.M. Boratto, Ricardo M. Orlando, "Cellulose cone tip as a sorbent material for multiphase electrical field-assisted extraction of cocaine from saliva and determination by LC-MS/MS," Talanta, vol. 208, p. 120353, 2020.
    [12]
    WANG, I.-Ting; FENG, Yu-Ting; CHEN, Chia-Yang., "Determination of 17 illicit drugs in oral fluid using isotope dilution ultra-high performance liquid chromatography/tandem mass spectrometry with three atmospheric pressure ionizations.," Journal of Chromatography B, vol. 878, no. 30, pp. 3095-3105, 2010.
    [13]
    Vogliardi, Susanna, et al., "Validation of a fast screening method for the detection of cocaine in hair by MALDI-MS," Analytical and bioanalytical chemistry, vol. 396, no. 7, pp. 2435-2440, 2010.
    [14]
    Alhefeiti, Manal A., James Barker, and Iltaf Shah, "Roadside drug testing approaches," Molecules, vol. 26, no. 11, p. 3291, 2021.
    [15]
    Concheiro, Marta, et al. , "Confirmation by LC–MS of drugs in oral fluid obtained from roadside testing," Forensic science international, vol. 170, no. 2-3, pp. 156-162, 2007.
    [16]
    He, Jing-Lin, et al, "Fluorescence aptameric sensor for strand displacement amplification detection of cocaine," Analytical chemistry, vol. 82, no. 4, pp. 1358-1364, 2010.
    [17]
    Sweeney, William, Leo R. Goldbaum, and Nicholas T. Lappas., "Detection of benzoylecgonine in urine by means of UV spectrophotometry," Journal of analytical toxicology, vol. 7, no. 5, pp. 235-236, 1983.
    [18]
    Fekete, Szabolcs, et al., "Current and future trends in UHPLC," TrAC Trends in Analytical Chemistry, vol. 63, pp. 2-13, 2014.
    [19]
    Stein, William H., and S. Moobe, "Chromatography of amino acids on starch columns. Separation of phenylalanine, leucine, isoleucine, methionine, tyrosine, and valine," journal of Biological Chemistry, vol. 176, pp. 337-365, 1948.
    [20]
    Caputo, Marco, et al., "Lego mindstorms fraction collector: a low-cost tool for a preparative high-performance liquid chromatography system," Analytical chemistry, vol. 92, no. 2, pp. 1687-1690, 2019.
    [21]
    Longwell, Scott A., and Polly M. Fordyce., "micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output," Lab on a Chip, vol. 20, no. 1, pp. 93-106, 2020.
    [22]
    Wang, Xuantang, Mingxia Gao, and Xiangmin Zhang., "Microliter-level multi-channel fraction collector for high-throughput separation system," Journal of Chromatography A, vol. 1656, no. 462535, 2021.
    [23]
    Ficarro, Scott B., et al., "Open source fraction collector/MALDI spotter for proteomics," HardwareX, vol. 11, p. e00305, 2022.
    [24]
    T. L. Automation, "MFx Collector," Trajan LEAP Automation, [Online]. Available: https://www.leaptec.com/products/mfx-collector.
    [25]
    Biorad, "Model 2110 Fraction Collector," Bio-rad laboratory inc. [Online].
    [26]
    Raspberry Pi, "Raspberry Pi 4 Model B Datasheet," Raspberry Pi, 2019.
    [27]
    T.R. Padmanabhan, Programming with Python, Springer, 2016.
    [28]
    Steiner, D., Krska, R., Malachová, A., Taschl, I., & Sulyok, M., "Evaluation of matrix effects and extraction efficiencies of LC–MS/MS methods as the essential part for proper validation of multiclass contaminants in complex feed," Journal of agricultural and food chemistry, vol. 68, no. 12, pp. 3868-3880, 2020.

    無法下載圖示 全文公開日期 2025/12/28 (校內網路)
    全文公開日期 2027/12/28 (校外網路)
    全文公開日期 2027/12/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE