簡易檢索 / 詳目顯示

研究生: 吳翰承
Han-Cheng Wu
論文名稱: 應用新穎彩色條紋投影輪廓技術於覆晶封裝錫球凸點高度量測系統
Application of novel color composite fringe projection profilometry technology for the flip-chip solder bump height measurement system
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 蔡明忠
黃昌群
邱智瑋
彭椏富
彭成瑜
學位類別: 博士
Doctor
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 條紋投影輪廓單應性轉換彩色混疊效應彩色複合條紋相位解纏繞
外文關鍵詞: fringe projection profilometry, homography transform, color crosstalk effect, color composite fringe, phase unwrapping
相關次數: 點閱:682下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以條紋投影輪廓技術為基礎,開發覆晶封裝錫球凸點進行高度量測系統。首先,提出新穎的單應性條紋校正技術。投影影像的座標和相機擷取影像座標間平面的單應性關係,用於在擷取影像平面上產生條紋影像。然後將影像轉換並投影到投影平面上,可有效地減少由條紋週期不一致所引起的相位誤差。然後針對彩色3CCD相機具有彩色混疊效應之問題,使用彩色混疊係數校正技術於抑制彩色3CCD相機中的彩色混疊效應。以及本研究提出各通道編入不同條紋基準值與振幅強度之條紋相位資訊,產生具有強健性之彩色複合條紋。並提出多通道複合相位解纏繞演算法,透過各通道的條紋振幅權重來進行不同通道相位資訊複合,提升物件高度的量測精度與量測穩定性。
實驗結果可知,本研究所提出之方法,量測50 μm高度平面,系統平均量測精度為0.43 μm,標準差1.38 μm。結果證明,本研究所提出的三維測量系統可有效地量測50 μm之高度平面。在覆晶封裝錫球凸點測量實驗中,分析彩色亮度響應,求得條紋基準值與振幅強度參數產生條紋,以克服覆晶封裝基板和錫球凸點之間的反射係數問題。本研究所提出的系統在焊料凸點測量中具有良好的測量結果和穩健的穩定性,並且可用於量測微米級的覆晶封裝錫球凸點之高度量測應用。


This study developed a flip-chip solder bump height measurement system based on fringe projection profilometry technology. First, this study proposed a novel method of homography fringe generation, using the planar homography relationship between the coordinates of the projected image and the camera-captured coordinates to generate a fringe image on the captured image plane. The image was then converted and projected onto the projection plane to obtain a corrected fringe image of periodic consistency, thus effectively reducing phase errors caused by an inconsistent period. Second, the study used the color crosstalk coefficient correction technique to suppress the color cross-talk effect in the color 3CCD camera. Third, this study proposed fringes with different base values and modulation intensities in color channels, in order to produce a color composite fringe with robustness, and set up a multi-channel composite phase unwrapping algorithm that uses fringe modulation weights of different channels to recombine the phase information for better measurement accuracy and stability.
The experimental results showed that the average measurement accuracy is 0.43 μm and the standard deviation is 1.38 µm. The results thus proved that the proposed height measurement system is effective in measuring a plane with a height of 50 μm. In the flip-chip solder bump measuring experiment, different fringe parameter-based values and amplitude intensity parameters were analyzed to overcome the problem of the reflective coefficient between the flip-chip baseboard and the solder bump. The proposed system presents good measurement results and robust stability in the solder bump measurement and can be used for the measurement of height information for micron flip-chip solder bump application.

摘要 I Abstract III 誌謝 V 目錄 VI 符號目錄 IX 圖目錄 XIII 表目錄 XV 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.2.1 覆晶封裝錫球凸點檢測技術 5 1.2.2 高度量測技術 9 1.2.3 條紋投影輪廓技術 11 1.3 研究目的 18 1.4 研究方法 19 1.5 論文流程與架構 20 第2章 條紋投影輪廓技術 23 2.1 條紋投影輪廓原理 23 2.2 相位平移輪廓法 25 2.2.1 三步相位平移輪廓法 26 2.2.2 四步相位平移輪廓法 29 2.2.3 相位解纏繞技術 31 2.3 軟硬體介紹 34 第3章 單應性條紋校正技術 38 3.1 條紋週期失真問題 38 3.2 傳統數位條紋產生方式 40 3.3 單應性座標轉換 41 3.4 單應性條紋週期校正 43 第4章 彩色條紋混疊校正 46 4.1 彩色混疊效應 46 4.2 彩色3CCD相機模型 48 4.3 彩色條紋混疊矩陣校正 49 4.3.1 三步相位平移於彩色混疊係數估測 50 4.3.2 四步相位平移於彩色混疊係數估測 52 4.3.3 彩色混疊效應校正 54 第5章 彩色複合條紋投影輪廓技術 56 5.1 彩色條紋投影輪廓技術 56 5.2 彩色複合條紋產生 57 5.3 多通道複合相位解纏繞技術 59 第6章 實驗結果與討論 64 6.1 系統校正及量測流程 64 6.2 單應性條紋週期校正實驗 66 6.3 彩色條紋混疊校正實驗 70 6.4 彩色複合條紋產生實驗 73 6.5 系統精度驗證實驗 77 6.6 覆晶封裝錫球凸點高度量測驗證實驗 84 6.7 量測時間評估 84 第7章 結論與未來研究方向 92 7.1 結論 92 7.2 未來研究方向 94 參考文獻 96 發表期刊著作 105

[1] R Tummala, EJ Rymaszewski, Klopfenstein and G Alan. Micro-electronic packaging handbook part II: semiconductor packag-ing. McGraw-Hill, New York, USA, 1997.
[2] RT Rao. Fundamentals of microsystems packaging. McGraw-Hill, New York, USA, 2001.
[3] P Elenius and L Levine. Comparing flip-chip and wire-bond in-terconnection technologies. Chip Scale Review: 81-87, 2000.
[4] M Pacheco, Z Wang, L Skoglund, Y Liu, A Medina, A Raman, R Dias, D Goyal and S Ramanathan. Advanced fault isolation and failure analysis techniques for future package technologies. Intel Technology Journal 9(4): 337–352, 2005.
[5] KW Ko, WJ Roh, HS Cho and HC Kim. A neural network ap-proach to the inspection of ball grid array solder joints on printed circuit boards. International Joint Conference on Neural Net-works: Neural Computing: New Challenges and Perspectives for the New Millennium: 233-238, Como, Italy, Italy, 27 July 2000.
[6] RRJ Lathrop. Solder paste print qualification using laser trian-gulation. IEEE Transactions on Components Packaging and Manufacturing Technology Part C 20(3): 174-182, 1997.
[7] HN Yen and DM Tsai. A fast full-field 3-D measurement system for BGA coplanarity inspection. International Journal of Ad-vanced Manufacturing Technology 24(1-2): 132-139, 2004.
[8] A Sassov and F Luypaert. X-ray digital microlaminography for BGA and flip-chip inspection. Instrumentation Related to Nuclear science and Technology 507(1): 239-244, Berkeley, CA, USA, 2-6 Aug 1999.
[9] JE Semmens and LW Kessler. Further investigation into the use of acoustic micro imaging for analyzing flip chip integrity and failure modes. International Conference on Multichip Modules: 165–169, Denver, CO, USA, 2-4 April 1997.
[10] HN Yen, DM Tsai and SK Feng. Full-field 3-D flip-chip solder bumps measurement using DLP-based phase shifting technique. IEEE transactions on advanced packaging 31(4): 830-840, 2008.
[11] L Su, T Shi, Z Xu, X Lu and G Liao. Defect inspection of flip chip solder bumps using an ultrasonic transducer. Sensors 13(12): 16281-16291, 2013.
[12] M Fan, L Wei, Z He, W Wei and X Lu. Defect inspection of solder bumps using the scanning acoustic microscopy and fuzzy SVM algorithm. Microelectronics Reliability 65: 192-197, 2016.
[13] X Lu, T Shi, J Han, G Liao, L Su and S Wang. Defects inspection of the solder bumps using self reference technology in active thermography. Infrared Physics and Technology 63: 97-102, 2014.
[14] M Aoyagi, N Watanabe, K Kikuchi, S Nemoto, N Arima, M Ishizuka, K Suzuki and T Shiomi. High-speed optical three di-mensional measurement method for micro bump inspection in 3D LSI chip stacking technology. IEEE Electronics Packaging and Technology Conference: 1-5, Singapore, 2-4 Dec 2015.
[15] MV Veenhuizen. Void detection in solder bumps with deep learning. Microelectronics Reliability 88–90: 315-320, 2018.
[16] RRJ Lathrop. Solder paste print qualification using laser trian-gulation. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C 20(3): 174-182, 1997.
[17] JP Lavelle, SR Schuet and DJ Schuet. High speed 3D scanner with real-time 3D processing. Proceedings the ISA/IEEE Sensors for Industry Conference, New Orleans, LA, USA, 27-29 Jan 2004.
[18] H Roth, T Neubrand and T Mayer. Improved inspection of miniaturised interconnections by digital X-ray inspection and computed tomography. 12th Electronics Packaging Technology Conference: 441-444, Singapore, 8-10 Dec 2010.
[19] LM Song, MP Wang, L Lu and HJ Huang. High precision camera calibration in vision measurement. Optics and Laser Technology 39: 1413-1420, 2007.
[20] Z Xiao, O Chee and A Asundi. An accurate 3D inspection system using heterodyne multiple frequency phase-shifting algorithm. Physics Procedia 19: 115-121, 2011.
[21] HN Yen, DM Tsai and JY Yang. Full-field 3-D measurement of solder pastes using LCD-based phase shifting techniques. IEEE Transactions on Electronics Packaging Manufacturing 29(1): 50-57, 2006.
[22] SS Gorthi and P Rastogi. Fringe Projection Techniques: Whither we are? Optics and Lasers in Engineering 48(2): 133-140, 2010.
[23] M Takeda and K Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics 22(24): 3977-3982, 1983.
[24] MA Gdeisat, DR Burton and MJ Lalor. Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform. Applied Optics 45(34): 8722-8732, 2006.
[25] MA Sutton, W Zhao, SR McNeill, HW Schreier and YJ Chao. Development and assessment of a single-image fringe projection method for dynamic applications. Experimental Mechanics 41(3): 205-217, 2001.
[26] XF Meng, X Peng, LZ Cai, AM Li, JP Guo and YR Wang. Wavefront reconstruction and three-dimensional shape meas-urement by two-step dc-term-suppressed phase-shifted intensi-ties. Optics Letters 34(8): 1210-1212, 2009.
[27] WH Su. Color-encoded fringe projection for 3D shape meas-urements. Optics Express 15(20): 13167-13181, 2007.
[28] Z Zhang, CE Towers and DP Towers. Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection. Optics Express 14(14): 6444-6455, 2006.
[29] E Hu, Y He and W Wu. Further study of the phase-recovering algorithm for saturated fringe patterns with a larger saturation coefficient in the projection grating phase-shifting profilometry. Optik 121(14): 1290-1294, 2010.
[30] B Li, Y Fu, J Zhang, H Wu, G Xia and G Jiang. A fast three-dimensional shape measurement method based on color phase coding. Optik 127(3): 1011-1015, 2016.
[31] JL Flores, A Muñoz, S Ordoñes, G Garcia-Torales and JA Ferrari. Color-fringe pattern profilometry using an efficient iterative al-gorithm. Optics Communications 391(15): 88-93, 2017.
[32] LC Chen and LH Tsai. Dual phase-shifting moire projection with tunable high contrast fringes for three-dimensional microscopic surface profilometry. Physics Procedia 19: 67-75, 2011.
[33] S Ma, C Quan, R Zhu and C Tay. Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry. Optics and Lasers in Engineering 50(8): 1107-1118, 2012.
[34] S Ma, R Zhu, C Quan, L Chen, CJ Tay and Bo Li. Flexible structured-light-based three-dimensional profile reconstruction method considering lens projection-imaging distortion. Applied Optics 51(13): 2419-2428, 2012.
[35] X Liu, Z Cai, Y Yin, H Jiang, D He, W He, Z Zhang and X Peng. Calibration of fringe projection profilometry using an inaccurate 2D reference target. Optics and Lasers in Engineering 89: 131-137, 2017.
[36] Y Fu, Y Wang, W Wang and J Wu. Least-squares calibration method for fringe projection profilometry with some practical considerations. Optik 124(19), 4041-4045, 2013.
[37] D Zheng and F Da. Gamma correction for two step phase shifting fringe projection profilometry. Optik 124(13), 1392-1397, 2013.
[38] S Li. Composited color-coded sinusoidal fringe pattern for ab-solute phase measurement. Optik 126(23): 3558-3561, 2015.
[39] CC Almaraz-Cabral, JJ Gonzalez-Barbosa, J Villa, JB Hurta-do-Ramos, FJ Ornelas-Rodriguez and DM Córdova-Esparza. Fringe projection profilometry for panoramic 3D reconstruction. Optics and Lasers in Engineering 78: 106-112, 2016
[40] S Gai and F Da. A novel phase-shifting method based on strip marker. Optics and Lasers in Engineering 48: 205-211, 2010.
[41] T Cheng, Q Du and Y Jiang. Color fringe projection profilometry using geometric constraints. Optics Communications 398(1): 39-43, 2017.
[42] S Zhang, Y Gong, Y Wang, J Laughner and IR Efimov. Some recent advance on high-speed, high resolution 3-D shape meas-urement using projector defocusing. International Symposium on Optomechatronic Technologies: 11746992, Toronto, ON, Cana-da, 25-27 Oct 2010.
[43] JL Flores, M Stronik, AntonioMuñoz, G Garcia-Torales, S Ordoñes and A Cruz. Dynamic 3D shape measurement by itera-tive phase shifting algorithms and colored fringe patterns. Optics Express 26(10): 12403-12414, 2018.
[44] C Zuo, Q Chen, G Gu, S Feng and F Feng. High-speed three-dimensional profilometry for multiple objects with com-plex shapes. Optics Express 20(17): 19493-19510, 2012.
[45] V Srinivasan, HC Liu and M Halioua. Automated phase-measuring profilometry of 3D diffuse objects. Applied Optics 23(18): 3105-3108, 1984.
[46] PS Huang, S Zhang and FP Chiang. Trapezoidal phase-shifting method for three-dimensional shape measurement. Optical En-gineering 44(12): 123601, 2005.
[47] P Jia, J Kofman and C English. Intensity-ratio error compensa-tion for triangular-pattern phase-shifting profilometry. Journal of the Optical Society of America 24(10): 3150-3158, 2007.
[48] E Hu, Y He and W Wu. Further study of the phase-recovering algorithm for saturated fringe patterns with a larger saturation coefficient in the projection grating phase-shifting profilometry. Optik 121(14): 1290-1294, 2010.
[49] F Wu, H Zhang, MJ Lalor and DR Burton. A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry. Optics Communications 187: 347-357, 2001.
[50] TW Hui and GKH Pang. 3-D measurement of solder paste using two-step phase shift profilometry”, IEEE Transactions on Elec-tronics Packaging Manufacturing 31(4): 306-315, 2008.
[51] S Ma, C Quan, CJ Tay, R Zhu and B Li. Phase error correction for digital fringe projection profilometry. Physics Procedia 19: 227-232, 2011.
[52] D Malacara. Optical shop testing, second edition. John Wiley & Sons. Inc., New York, USA, 1992.
[53] DC Ghiglia and MD Pritt. Two-dimensional phase unwrapping: theory, algorithms and software. John Wiley, & Sons. Inc., New York, USA, 1998.
[54] C Quan, W Chen and CJ Tay. Phase-retrieval techniques in fringe-projection profilometry. Optics and Lasers in Engineering 48(2): 235-243, 2010.
[55] H Miao, C Quan, CJ Tay and Y Fu. Analysis of phase distortion in phase-shifted fringe projection. Optics and Lasers in Engi-neering 45(2): 318-325, 2007.
[56] ZW Li, YS Shi, CJ Wang, DH Qin and K Huang. Complex object 3D measurement based on phase-shifting and a neural network. Optics Communications 282(14): 2699-2706, 2009.
[57] S Ma, C Quan, R Zhu and Tay C. Investigation of phase error correction for digital sinusoidal phase-shifting fringe projection profilometry. Optics and Lasers in Engineering 50(8): 1107-1118, 2012.
[58] S Singh and D Ganotra. Phase estimation for Zernike circle polynomials using phase locked loops for investigations of camera aberrations. Optics and Lasers in Engineering 51(3): 261-269, 2013.
[59] K Jambunathan, LS Wang, BN Dobbins and SP He. Semi-automatic phase shift calibration using digital speckle pattern interferometry. Optics and Laser Technology 27(3): 145-151, 1995.
[60] Z Chuan, TD Long, Z Feng and DZ Li. A planar homography estimation method for camera calibration. IEEE International Symposium on Computational Intelligence in Robotics and Au-tomation: 424-429, Kobe, Japan, 16-20 Jul 2003.
[61] J Su, R Chung and L Jin. Homography-based partitioning of curved surface for stereo correspondence establishment. Pattern Recognition Letters 28(12): 1459-1471, 2007.
[62] R Hartley and A Zisserman. Multiple view geometry in computer vision. Cambridge University Press, Cambridge, U.K., 2000.
[63] C Wootton. A practical guide to video and audio compression: from sprockets and rasters to macroblocks. Taylor & Francis, New York, USA, 2005.
[64] Q Chen, D Chitnis, K Walls, TD Drysdale, S Collins and DRS Cumming. CMOS photodetectors integrated with plasmonic color filters. IEEE Photonics Technology Letters 24(3): 197-199, 2012.
[65] D Caspi, N Kiryati and J Shamir. Range imaging with adaptive color structured light. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(5): 470-480, 1998.
[66] PS Huang, Q Hu, F Jin, and FP Chiang. Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring. Optical Engineering 38(6): 1065-1071, 1999.
[67] F Da, L Wang and L Hu. Fringe projection profilometry based on complementary color-encoded fringe patterns. Optics and Laser Technology 44(8): 2332-2339, 2012.
[68] L Rao and F Da. Neural network based color decoupling tech-nique for color fringe profilometry. Optics and Laser Technology 70: 17-25, 2015.
[69] C Zhou, T Liu, S Si, J Xu, Y Liu and Z Lei. An improved stair phase encoding method for absolute phase retrieval. Optics and Lasers in Engineering 66: 269-278, 2015.
[70] K Chen, J Xi, Y Yu, S Tong and Q Guo. Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns. Applied Optics 52(30): 7360-7366, 2013.
[71] YR Shiau and BC Jiang. Determine a vision system’s 3-D coor-dinate measurement capability using Taguchi methods. Interna-tional Journal of Production Research 29: 1101-1122, 1991.
[72] RA Haddad and AN Akansu. A class of fast Gaussian binomial filters for speech and image processing. IEEE Transactions on Signal Processing 39(3): 723-727, 1991.

無法下載圖示 全文公開日期 2024/02/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2029/02/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE