簡易檢索 / 詳目顯示

研究生: 陳穎德
Ying-De Chen
論文名稱: 球型壓電馬達姿態運動控制研究
Attitude Motion Control of Spherical Piezoelectric Motor
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 藍振洋
Jhen-Yang Lan
劉孟昆
Meng-Kun Liou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 95
中文關鍵詞: 球型壓電馬達姿態控制全軸向多自由度電極配置
外文關鍵詞: Spherical piezoelectric motor, attitude control, omni-directional, multi-DOF, electrode configuration
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 球型壓電馬達具備高角度解析度和多軸向輸出等優點,因此廣泛應用於機器人關節和精密定位系統,然而,現有研究偏向實現多軸向力矩輸出,卻忽略了對馬達轉子的姿態控制方法。大部分球型壓電馬達系統僅能實現在坐標系中的 xyz三軸旋轉,僅有少數系統能達到多軸向運動,但通常受限於單一平面或缺乏清晰定義的實際軸向範圍,且大多採用開迴路控制,缺少基於模型的控制方法。為了解決上述問題,本研究以一自行開發的三定子球型壓電馬達作為研究對象進行姿態控制與合成軸向研究。此系統採用壓電電極配置法激發定子側向振動模態以此提升單一壓電片下的致動效 能;同時藉由改變定子與轉子間接觸點位置來產生相反轉向的驅動力矩,結合線性疊加概念便可達到轉子全軸向的操作。為了處理奇異點問題,本文使用四元數作為系統狀態建構轉子動態模型,藉由計算力矩法得到命令力矩並分解此力矩決定各個定子需要的驅動力矩,最終實現馬達轉子的姿態控制。球型馬達在不同應用場合中欲達成的運動目標不盡相同,經過分析球型轉子所有可能的運動行為,我們提出了三種運動模式:定位、自旋和混合模式,分別為姿態定位控制、角速度控制和兩者同時進行控制。通過對這些馬達運動行為的歸類,可幫助我們了解在各種情況下最適合的運 動模式,使馬達在姿態控制上有更高的應用價值。本馬達系統根據不同的定子與轉子接觸點位置產生期望的合成軸向,在三定子的組合下能夠產生八組軸向空間從而達到全軸向空間,因此進行轉子運動控制時需先判別輸出軸向所屬的軸向空間後方能切換接觸點位置給予正確的驅動力矩。為了減少多次切換接觸點造成的可能動態影響,我們提出基於切換優先級概念的接觸點切換演算法以便優化切換時機。透過電腦模擬轉子動態結果,我們成功地驗證所提出的姿態控制器和切換接觸點演算法的有效性。本文所提出之全軸向轉子閉迴路運動控制架構具備極佳泛用性,除了壓電馬達系 統外亦可結合新型機構設計開發成本較低之球形電磁式馬達系統,值得學者們持續深入探討其應用潛力與多自由度運動系統控制效能。


    Spherical piezoelectric motors (SPM) have been applied to multi-DOF robot joints and precision positioning systems due to the advantages of high resolution and multi-axis output. However, existing research mainly focuses on realizing multi-axis torque outputs while overlooking methods controlling the motor's rotor orientation. Most existing SPM systems can only achieve three-axis rotations (xyz) in the coordinate system. Although there are a few reported systems capable of generating multi-axis motion, the rotor orientations are often limited to a single 2D plane and the ranges of the actual axial movements are not well defined. As a result, open-loop control systems are often applied to implement rotor attitude control for prototype evaluation and the system positioning accuracy and robustness still remains a great challenge for precision motion control. This study proposes a feedback control framework for rotor attitude control of a three-stator based omni-directional SPM using the technique of electrode configuration to enhance stator excitation efficiency under lateral mode resonance. The driving torques of the rotor are designed to achieve omni-directional capability with a linear combination of six elementary torque orientations by adjusting the contact point positions between the stators and the rotor. This study employs a quaternion based dynamic model to avoid singularity issues in manipulating omni-directional rotors and derives the decomposed control commands to each stator from a computed torque based control law. This study applies the proposed rotor attitude control framework to general motion control applications categorized into three groups, including positioning, spinning, and hybrid modes. The control goal of these motion modes is to implement desired 3D space position control, angular velocity control, and a combination of both. Because the orientation configuration space is composed of eight vector spaces for the proposed SPM system, it is mandatory to identify the belonging vector space of the desired orientation outputs to devise the required torque commands for rotor motion control. A priority level based switching algorithm is developed to facilitate torque trajectory generation and reduce the dynamic effects caused by switching rotor contact positions. Simulation results on these three motion modes are finally conducted to validate the proposed rotor attitude control algorithm and SPM system.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 本文貢獻與架構 第二章 系統設計與驅動原理 2.1 系統架構 2.1.1 機構設計 2.1.2 驅動電路 2.1.3 感測器 2.2 壓電材料 2.2.1 壓電效應 2.2.2 特性參數 2.3 致動模態設計 2.3.1 電極配置法 2.3.2 有限元素分析 2.3.3 振動量量測 2.4 驅動特性 2.4.1 單一定子的驅動力矩 2.4.2 系統基本軸向 第三章 轉子動態模型 3.1 四元數(Quaternion) 3.1.1 數學運算 3.1.2 空間中的旋轉 3.2 轉子動態方程式 第四章 控制架構 4.1 轉子運動模式 4.2 轉子姿態控制模擬 4.2.1 計算力矩法(Computed Torque Control) 4.2.2 姿態控制架構 4.2.3 Positioning模式-模擬結果 4.2.4 Spin模式-模擬結果 4.2.5 Hybrid模式-模擬結果 4.3 定子接觸點切換演算法 4.3.1 合成軸向空間 4.3.2 軸向映射 4.3.3 切換優先級 4.4 系統控制架構 4.4.1 命令力矩轉換輸入電壓 4.4.2 系統控制架構模擬 第五章 結論與未來目標 5.1 結論 5.2 未來目標 參考文獻 附錄A:寰辰QA壓電陶瓷材料參數

    [1] S. E. Wright, A. W. Mahoney, K. M. Popek, and J. J. Abbott, “The Spherical-Actuator-Magnet Manipulator: A Permanent-Magnet Robotic End-Effector,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1013–1024, Oct. 2017.
    [2] S. Christensen and S. Bai, “Kinematic Analysis and Design of a Novel Shoulder Exoskeleton Using a Double Parallelogram Linkage,” Journal of Mechanisms and Robotics, vol. 10, no. 041008, May 2018.
    [3] F. Patanè and P. Cappa, “A 3-DOF parallel robot with spherical motion for the rehabilitation and evaluation of balance performance,” IEEE Trans Neural Syst Rehabil Eng, vol. 19, no. 2, pp. 157–166, Apr. 2011.
    [4] N. M. Bajaj, A. J. Spiers, and A. M. Dollar, “State of the art in prosthetic wrists: Commercial and research devices,” in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Aug. 2015.
    [5] L. Gan, Y. Pei and F. Chai, "Tilting Torque Calculation of a Novel Tiered Type Permanent Magnet Spherical Motor," in IEEE Transactions on Industrial Electronics, vol. 67, no. 1, pp. 421-431, Jan. 2020.
    [6] J.-A. Leal-Naranjo, M. Wang, J.-C. Paredes-Rojas, and H. Rostro-Gonzalez, “Design and kinematic analysis of a new 3-DOF spherical parallel manipulator for a prosthetic wrist,” J Braz. Soc. Mech. Sci. Eng., vol. 42, no. 1, p. 63, Dec. 2019.
    [7] H. Li and Y. Shen, “Thermal Analysis of the Permanent-Magnet Spherical Motor,” IEEE Transactions on Energy Conversion, vol. 30, no. 3, pp. 991–998, Sep. 2015.
    [8] J. He, G. Li, R. Zhou, and Q. Wang, “Optimization of Permanent-Magnet Spherical Motor Based on Taguchi Method,” IEEE Transactions on Magnetics, vol. 56, no. 2, pp. 1–7, Feb. 2020.
    [9] K. Bai and K.-M. Lee, “Direct Field-Feedback Control of a Ball-Joint-Like Permanent-Magnet Spherical Motor,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 975–986, Jun. 2014.
    [10] H. Li and T. Li, “End-Effect Magnetic Field Analysis of the Halbach Array Permanent Magnet Spherical Motor,” IEEE Transactions on Magnetics, vol. 54, no. 4, pp. 1–9, Apr. 2018.
    [11] A. Bhatia, M. Kumagai, and R. Hollis, “Six-stator spherical induction motor for balancing mobile robots,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, pp. 226–231.
    [12] S. Čorović, M. Vidrih, and D. Miljavec, “Three-dimensional finite element modeling and analysis of spherical induction motor,” in 2016 17th International Conference on Mechatronics - Mechatronika (ME), Feb. 2016, pp. 1–4.
    [13] J. F. P. Fernandes, V. M. Machado, and P. J. C. Branco, “Magnetic Field Analysis in Shell-Like Spherical Induction Machines with Zenithal Traveling Waves,” IEEE Transactions on Energy Conversion, vol. 32, no. 3, pp. 1081–1089, Sep. 2017.
    [14] X. Gao, S. Zhang, J. Deng, and Y. Liu, “Development of a Small Two-Dimensional Robotic Spherical Joint Using a Bonded-Type Piezoelectric Actuator,” IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 724–733, Jan. 2021.
    [15] V. Jūrėnas, G. Kazokaitis, and D. Mažeika, “3DOF Ultrasonic Motor with Two Piezoelectric Rings,” Sensors, vol. 20, no. 3, Art. no. 3, Jan. 2020.
    [16] Z. Huang, S. Shi, W. Chen, L. Wang, L. Wu, and Y. Liu, “Development of a novel spherical stator multi-DOF ultrasonic motor using in-plane non-axisymmetric mode,” Mechanical Systems and Signal Processing, vol. 140, p. 106658, Jun. 2020.
    [17] S. Zhang, J. Liu, J. Deng, and Y. Liu, “Development of a Novel Two-DOF Pointing Mechanism Using a Bending–Bending Hybrid Piezoelectric Actuator,” IEEE Transactions on Industrial Electronics, vol. 66, no. 10, pp. 7861–7872, Oct. 2019.
    [18] W. Kobayashi, H. Tamaki, T. Akagi, S. Dohta, and S. Shimooka, “Development of Flexible Electro-Hydraulic Spherical Actuator,” Journal of Robotics and Mechatronics, vol. 34, no. 2, pp. 382–389, 2022.
    [19] S. L. Fang, L. Wang, and S. Ding, “A Novel Hydraulic Spherical Joint and Motion Analysis,” Advanced Materials Research, vol. 971–973, pp. 314–317, 2014.
    [20] M. Cheng, Z. Han, R. Ding, J. Zhang, and B. Xu, “Development of a redundant anthropomorphic hydraulically actuated manipulator with a roll-pitch-yaw spherical wrist,” Front. Mech. Eng., vol. 16, no. 4, pp. 698–710, Dec. 2021.
    [21] N. Kasashima, K. Ashida, T. Yano, A. Gofuku, and M. Shibata, “Torque Control Method of an Electromagnetic Spherical Motor Using Torque Map,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 4, pp. 2050–2060, Aug. 2016.
    [22] R. Zhou, G. Li, Q. Wang, and J. He, “Torque Calculation of Permanent-Magnet Spherical Motor Based on Permanent-Magnet Surface Current and Lorentz Force,” IEEE Transactions on Magnetics, vol. 56, no. 5, pp. 1–9, May 2020.
    [23] H. Li, Y. Zhao, B. Li, G. Li, and L. Cui, “Torque Calculation of Permanent Magnet Spherical Motor Based on Virtual Work Method,” IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7736–7745, Sep. 2020.
    [24] M. Kumagai and R. L. Hollis, “Development and control of a three DOF spherical induction motor,” in 2013 IEEE International Conference on Robotics and Automation, May 2013, pp. 1528–1533.
    [25] J. F. P. Fernandes and P. J. C. Branco, “The Shell-Like Spherical Induction Motor for Low-Speed Traction: Electromagnetic Design, Analysis, and Experimental Tests,” IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4325–4335, Jul. 2016.
    [26] D.-K. Kim, H. Yoon, W.-Y. Kang, Y.-B. Kim, and H.-T. Choi, “Development of a spherical reaction wheel actuator using electromagnetic induction,” Aerospace Science and Technology, vol. 39, pp. 86–94, Dec. 2014.
    [27] B. Bian and L. Wang, “A GA-Based Parameters Tuning Method for Active Disturbance Rejection Control of Hydraulic Spherical Motion Actuator,” in 2021 8th International Conference on Electrical and Electronics Engineering (ICEEE), Apr. 2021.
    [28] K. Takemura and T. Maeno, “Design and control of an ultrasonic motor capable of generating multi-DOF motion,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 4, pp. 499–506, Feb. 2001.
    [29] X. Yang, Y. Liu, W. Chen, and J. Liu, “Sandwich-Type Multi-Degree-of-Freedom Ultrasonic Motor With Hybrid Excitation,” IEEE Access, vol. 4, pp. 905–913, 2016.
    [30] S.-C. Shen and J.-C. Huang, “Design and Fabrication of a High-Power Eyeball-Like Microactuator Using a Symmetric Piezoelectric Pusher Element,” Journal of Microelectromechanical Systems, vol. 19, no. 6, pp. 1470–1476, Feb. 2010.
    [31] H. Paku and K. Uchiyama, “Satellite Attitude Control System Using a Spherical Reaction Wheel,” Applied Mechanics and Materials, vol. 798, pp. 256–260, 2015.
    [32] F. Wang, U. Nishizawa, H. Tanaka, and S. Toyama, “Development of miniature spherical ultrasonic motor using wire stators,” Journal of Vibroengineering, vol. 20, no. 8, Art. no. 8, Dec. 2018.
    [33] T. Hwang, Y. Sung, and Y. Huang, “Towards an Omni-directional Orientation Manipulation of Spherical Piezoelectric Motor: A Torque Vector Composition Method,” in 2021 21st International Conference on Control, Automation and Systems (ICCAS), Oct. 2021, pp. 01–08.
    [34] 黃太岐,「三定子球型壓電馬達系統建模、全軸向分析理論建立與實作驗證」,國立台灣科技大學機械工程學系碩士論文,2021。
    [35] A. Krushynska, V. Meleshko, C.-C. Ma, and Y.-H. Huang, “Mode Excitation Efficiency for Contour Vibrations of Piezoelectric Resonators,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 58, pp. 2222–38, Oct. 2011.
    [36] Y.-H. Huang, “Electromechanical coupling efficiency of transverse vibration in piezoelectric plates according to electrode configuration,” Journal of the Chinese Institute of Engineers, vol. 36, no. 7, pp. 842–855, Oct. 2013.
    [37] K. Spanner and B. Koc, “Piezoelectric Motor Using In-Plane Orthogonal Resonance Modes of an Octagonal Plate,” Actuators, vol. 7, no. 1, Art. no. 1, Mar. 2018.
    [38]直接數位合成器 (DDS) 基本知識 | DigiKey。檢自https://www.digikey.tw/zh/articles/the-basics-of-direct-digital-synthesizers-ddss.
    [39] K, “四元数与三维旋转.” Jul. 01, 2023. Accessed: Jul. 02, 2023. [Online]. Available: https://github.com/Krasjet/quaternion.
    [40] B. Graf, “Quaternions and dynamics.” arXiv, Nov. 18, 2008. doi: 10.48550/arXiv.0811.2889.
    [41] J. Solà, “Quaternion kinematics for the error-state Kalman filter.” arXiv, Nov. 03, 2017.
    [42] B. Bacon, “Quaternion-Based Control Architecture for Determining Controllability/Maneuverability Limits,” in AIAA Guidance, Navigation, and Control Conference, American Institute of Aeronautics and Astronautics.
    [43] K. K. Liang, “Efficient conversion from rotating matrix to rotation axis and angle by extending Rodrigues’ formula.” arXiv, Oct. 09, 2018.
    [44] Haber, Howard E. "Rotations and Reflections." University of California, Santa Cruz.(2015).Available:http://scipp.ucsc.edu/~haber/archives/physics251_15/rotreflect_15.pdf

    無法下載圖示 全文公開日期 2025/08/28 (校內網路)
    全文公開日期 2028/08/28 (校外網路)
    全文公開日期 2028/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE