簡易檢索 / 詳目顯示

研究生: 邵培盛
Pei-sheng Shao
論文名稱: 一種取代高溫錫-鉛銲料之新式構裝技術
A Novel Electronic Packaging Technique to Replace High-Temperature Sn-Pb Solders
指導教授: 顏怡文
Yee-wen Yen
口試委員: 吳子嘉
Albert T. Wu
陳志銘
C. M. Chen
施劭儒
Shao-ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 60
中文關鍵詞: 迴焊介金屬相
外文關鍵詞: reflow, IMC
相關次數: 點閱:213下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以In/Ni/Cu/Ni/In 多層結構與Sn/Cu 基材進行200、240 與
300oC 下迴焊接合2 小時後,並在100oC 下進行50~1500 小時的時效
熱處理,希望利用此種結構能夠取代高溫錫-鉛銲料並兼顧可靠度與
環保之需求。研究結果顯示此三種溫度系統下此多層結構與Sn/Cu 基
材界面處皆會生成(Cu,Ni)6(Sn,In)5 相與Cu2In3Sn 三元介金屬相。迴焊
溫度200oC 時,在靠近鎳層處會有一平整(Ni,Cu)3(Sn,In)4 相的生成;
而300oC 系統在靠近銅基材端會有一平整Cu3(Sn,In)相的生成,且
(Cu,Ni)6(Sn,In)5 與Cu3(Sn,In)相在接合界面中會佔大多數。各系統生
成的介金屬相在經過時效時間增長並不會有任何改變,但200 與
240oC 的系統中兩介金屬相Cu2In3Sn 與(Cu,Ni)6(Sn,In)5 之所占區域比
值會隨之增加;而300oC 之系統Cu3(Sn,In)相亦會隨之增厚,且此相
的成長機制是由擴散控制。在機械強度測試方面,300oC 之系統機械
強度最為優良。綜觀實驗結果In/Ni/Cu/Ni/In 多層結構在迴焊300oC
時,在界面處大多會生成高熔點的介金屬相,且在機械強度方面又較
其他兩個系統來的優良,故認定本研究在此系統下,此多層結構最適
合用來取代高溫錫鉛銲料的選擇。


In this study, the multi-layer structure (In/Ni/Cu/Ni/In) and Sn/Cu
substrate reflowing at 200, 240 and 300oC for 2 h, then aging at 100oC for
50-100 h. Hoping to use this structure to replace the high-temperature
Sn-Pb solders and achieve both reliability and environmental protection
requirements. The results showed the all systems were formed the
(Cu,Ni)6(Sn,In)5 phase and Cu2In3Sn phase at interface. In the 200oC
system, it formed a planar layer (Ni,Cu)3(Sn,In)4 near Ni layer; In the
300oC system, it formed a planar layer Cu3(Sn,In) near Cu substrate, and
most of them were (Cu,Ni)6(Sn,In)5 and Cu3(Sn,In) two phases. All
systems formed IMCs don’t change with increasing aging time. But in the
systems which were reflowed at 200 and 240oC, Cu2In3Sn and
(Cu,Ni)6(Sn,In)5 phases of the occupied area ratio were increased; In the
system which was reflowed at 300oC, Cu3(Sn,In) phase was growth with
increasing aging time, and the growth mechanism is controlled by
diffusion. In the mechanical strength testing, the reflowed at 300oC
system is the most excellent. From all the results, this study finds that
under the reflowed at 300oC system, this multi-layer structure is most
suitable choice to replace high-temperature Sn-Pb solder.

中文摘要 ..................................................................................................... I 英文摘要 .................................................................................................... II 誌謝 ........................................................................................................... III 目錄 ............................................................................................................ V 圖目錄 ..................................................................................................... VII 表目錄 ...................................................................................................... IX 第一章前言 .............................................................................................. 1 第二章文獻回顧 ...................................................................................... 3 2-1 電子構裝簡介 .............................................................................. 3 2-2 無鉛法規 ...................................................................................... 5 2-3 高溫無鉛銲錫 .............................................................................. 6 2-4 界面反應與擴散理論 .................................................................. 7 2-5 固-液擴散接合 ............................................................................. 8 2-6 界面反應相關文獻 .................................................................... 11 2-6.1 In-Sn/Cu 的界面反應 ........................................................ 11 2-6.2 In-Sn/Ni 的界面反應 ........................................................ 12 2-6.3 其他 .................................................................................. 13 2-7 機械性質測試 ............................................................................ 17 2-8 研究目的 ..................................................................................... 18 第三章實驗方法 .................................................................................... 19 3-1 實驗製程與設備 ......................................................................... 19 3-2 界面反應的觀察與分析 ............................................................. 20 3-2.1 介金屬相的分析 ............................................................... 20 3-2.2 機械性質 ........................................................................... 20 第四章結果與討論 ................................................................................ 25 4-1 多層結構的鍍層參數與製備 .................................................... 25 4-2 多層結構與Sn/Cu 基材在迴焊溫度200oC 之系統 ................ 27 4-2.1 迴焊接合2 小時之界面反應 ........................................... 27 4-2.2 在100oC 時效熱處理100-1500 小時之界面反應 .......... 29 4-3 多層結構與Sn/Cu 基材在迴焊溫度240oC 之系統 ................ 34 4-3.1 迴焊接合2 小時之界面反應 ........................................... 34 4-3.2 在100oC 時效熱處理100-1500 小時之界面反應 .......... 36 4-4 多層結構與Sn/Cu 基材在迴焊溫度300oC 之系統 ................ 40 4-4.1 迴焊接合2 小時之界面反應 ........................................... 40 4-4.2 在100oC 時效熱處理100-1500 小時之界面反應 .......... 42 4-5 多層結構機械性質的測試 ........................................................ 49 VI 4-5.1 抗拉強度之測試 ............................................................... 49 4-5.2 破斷面分析 ....................................................................... 50 第五章結論 ............................................................................................ 54 參考文獻 .................................................................................................. 56

1. “WEEE Regulations”EU-Directive 96/EC (2002).
2. “RoHS Regulations”EU-Directive 95/EC (2002).
3. 田明波著、顏怡文修訂,“半導體電子元件構裝技術”,五南圖書
出版有限公司,台北,(2005)。
4. R. R. Tummala and E. J. Rymaszewski, “Microelectronic Packaging
Handbook”, Van Nostrand Reinhold (1989).
5. J. H. Lau, “Ball Grid Array Technology”, McGraw-Hill, New York
(1995).
6. J.W. Yoon, S. W. Kim and S. B. Jung, “IMC morphology, interfacial
reaction and joint reliability of Pb-free Sn-Ag-Cu solder on
electrolytic Ni BGA substrate” , J. Alloys Compds, 392 (2005)
247-252.
7. K. Suganuma, S. Kim, and K. S. Kim, “High-Temperature Lead-Free
Solders : Properties and Possibilities”, JOM , 61 (2009) 64-71.
8. D. M. Jacobson and G. Humpston, “Diffusion Soldering” Solder. Surf.
Mount. Technol., 10 (1992) 27-32.
9. L. Bernstein, “Semiconductor joining by the
solid-liquid-interdiffusion (SLID) process”, J. Electrochem. Soc., 113
(1966) 1282-1288.
10. C. C. Lee, C. Y. Wang, G. Matijasevic, “Advances in Bonding
Technology for Electronic Packaging”, J. Electron. Pack. 115 (1993)
201-207.
11. L. Bernstein and H. Bartholomew, Metall. Trans A, 236 (1996) 405.
12. S. Bader, W. Gust and Heiber, “Rapid formation of intermetallic
compounds by interdiffusion in the Cu-Sn and Ni-Sn system”, Acta
Metall.Mater., 43, No. 1, (1995) 329-337.
13. 顏怡文、魏弘堯、劉為開、饒建中與李嘉平,“焊料球及基材板之
57
接合方法及應用其之封裝結構之製造方法”,中華民國專利證明,
第340419 號,2011-4-11~2027-1-4.
14. Y. W. Yen, W. K. Liou, H. Y. Wei and C. Lee, “Interfacial Reactions
Between Pb-Free Solders and In/Ni/Cu Multilayer Substrates”, J.
Electron. Mater., 38 (2009) 93-99.
15. G. W. Powell and J. D. Braun, “Diffusion in the gold-indium system”,
Trans. AIME, 230 (1964) 694-699.
16. J. C. Lin, L. W. Huang, G. Y. Jang and S. L. Lee, “Solid–liquid
interdiffusion bonding between In-coated silver thick films”, Thin
solid Films, 410 (2002) 212-221.
17. R. W. Chuang and C. C. Lee, “High-temperature non-eutectic
indium-tin joints fabricated by a fluxless process”, Thin solid Films,
414 (2002) 175-179.
18. A. D. Roming, F. G. Yost and P. F. Hiava,“Failure Analysis in
Microelectronics:Intermetallic Layer Growth in Cu/Sn-/In Solder
Joints”, Microbeam Analysis, (1984) 87-92.
19. J. L. Freer and J. W.Morris,“Microstructure and Creep of Eutectic
Indium/Tin on Copper and Nickel substrates”, J. Electron. Mater., 21
(1992) 647-652.
20. D. G. Kim and S. B. Jung,“Interfacial reactions and growth kinetics
for intermetallic compound layer between In-48Sn solder and bare
Cu substrate”, J. Alloys Compds., 386 (2005) 151-156.
21. T. H. Chuang, C. L. Yu, S. Y. Chang, and S. S. Wang, “Phase
identification and growth kinetics of the intermetallic compounds
formed during In-49Sn/Cu soldering reactions”, J. Eletron. Mater., 31
(2002) 640-645.
22. L. Yan, C. Lee,D. Yu, W. K. Choi,A. Yu, S. U. Yoon and J. H. Lao,“A
Hermetic Chip to Chip Bonding at low Temperature with
58
Cu/In/Sn/Cu Joint”, Eletronic Components and Technology
Conference, (2008) 1844-1848.
23. P. T. Vianco, P. F. Hlava and A. C. Kilgo,“Intermetallic Compound
Layer Formation Between Copper and Hot-Dipped
100In,50In-50Sn,100Sn,and 63Sn-37Pb Coatings”, J. Electron.
Mater., 23 (1994) 583-594.
24. K. L. Lin and C. J. Chen,“The Interactions between In-Sn solders and
Electroless Ni-P Deposit upon Heat Treatment”, J. Mater. Sci., 7
(1997) 397-401.
25. J. M. Koo and S. B. Jung,“Reliability of In-48Sn solder/Au/Ni/Cu
BGA packages during reflow process”, J. Electron. Mater., 34 (2005)
1565-1572.
26. H. M. Wu, F. C. Wu and T. H. Chuang,“Intermetallic Reaction in a
Sn-20In-2.8Ag Solder Ball-Grid-Array Package with Au/Ni/Cu
Pads”, J. Electron. Mater., 34 (2005) 1385-1390.
27. S. S. Wang, Y. H. Tseng and T. H. Chuang,“Intermetallic Compounds
Fomed during the Interfacial Reactions between Liquid In-49Sn
Solder and Ni Substrate”, J. Electon. Mater., 35 (2006) 165-169.
28. A. Sharif and Y. C.Chan,“Interfacial reactions on electrolytic Ni and
electoless Ni(P) metallization with Sn-In-Ag-Cu solder”, J. Alloys
Compds., 393 (2005) 135-140.
29. J. W. Yoon,S. W. Kim and S. B. Jung ,“Interfacial reaction and
Mechanical Properties of Eutectic Sn-0.7Cu/Ni BGA Solder Joints
during Isothermal Long-term Aging”, J. Alloys Compds., 391 (2005)
82-99.
30. J. W. Yoon,S. W. Kim and S. B. Jung,“Effect of Reflow Time on
Interfacial Reaction and Shear Strength of Sn-0.7Cu Solder/Cu and
Electroless Ni-P BGA Joints”, J. Alloys Compds., 385 (2005) 82-89.
31. D. Gur and M. Bamberger, “Reactive isothermal solidification in the
59
Ni-Sn system ”, Acta Mater., 46 (1998) 4917-4923.
32. S. W. Chen, C. M. Chen and W. C. Liu, “Electric current effects upon
the Sn/Cu and Sn/Ni interfacial reactions”, J. Electron. Mater., 27
(1998) 1193-1198.
33. S. K. Lin, T. Y, Chung, S. W. Chen and C. H. Chang,“250oC
isothermal section of ternary Sn-In-Cu phase equilibria”, J. Mater.
Res., 24 (2009) 2628-2637.
34. H. Okamoto, ASM Hand book Vol.3 Alloy Phase Diagrams, edited
by H. Baker, ASM International, Materials Park, Ohio (1992).
35. N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams,
11 (1990) 278-287.
36. Z. Bahari, E. Dichi, B.Legendre and J. Dugue, “The equilibrium
phase diagram of the copper–indium system: a new investigation”,
Thermochimica Acta, 401 (2003) 131-138.
37. S. Ishikawa, E. Hashino, T. Kono and K. Tatsumi, “IMC Growth of
Solid State Reaction between Ni UBM and Sn-3Ag-0.5Cu and
Sn-3.5Ag Solder Bump Using Ball Place Bumping Method During
Method During Aging”, Materials Transactions, 46, (2005)
2351-2358.
38. D. J. Xie, Yan C. Chan, J. K. L. Lai and I. K. Hui, “Fatigue life
estimation of surface mount solder joints”, IEEE Transactions on
Component, Packaging, and Manufacturing Technology-Part B 19
(1996) 669-678.
39. W. Hume-Rothery, “Researches on the nature, properties, and
condition of formation of intermetallic compounds”, J. Inst. Met. 35
(1926) 295.
40. T. Heumann and Z. Metallkd, Binary Alloy Phase Diagrams 2nd
Edition, ed. By T. B. Massalski and H. Okamoto, ASM International
Materials Park, Ohio, (1990) 2864.
60
41. P. Nash and A. Nash ,ASM Handbook vol. 3 Alloy Phase Diagrams,
ed. By H. Baker, Materials Park, Ohio :ASM International (1991).
42. W. T. Chen, C. E. Ho and C. R. Kao, “Effect of Cu concentration on
the interfacial reactions between Ni and Sn-Cu solders”, J. Mater.
Res., 17 (2002) 263-266.
43. T. H. Chuang, H. J. Lin and C. W. Tsao,“Intermetallic compounds
formed during diffusion soldering of Au/Cu/Al2O3 and Cu/Ti/Si with
Sn/In interlayer”, J. Electron. Mater., 35 (2006) 1566-1570.

無法下載圖示 全文公開日期 2013/07/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE