簡易檢索 / 詳目顯示

研究生: 許智超
Chih-chao Hsu
論文名稱: 以嵌入介孔碳材之LiFePO4為鋰離子電池陰極材料之研究
LiFePO4 Incorporated Mesoporous Carbon used as Cathode Materials for Lithium Ion Battery
指導教授: 黃炳照
Bing-Joe Hwanh
口試委員: 蕭敬業
Ching-Yeh Shiau
周澤川
Tse-chuan Chou
杜景順
Jing-Shun Du
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 172
中文關鍵詞: 鋰離子電池陰極材料磷酸鋰鐵介孔碳材
外文關鍵詞: Li-ion battery, cathode material, LiFePO4, mesoporous carbon
相關次數: 點閱:335下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文之研究目的,為利用疏水性膠囊化的方法將LiFePO4 合成於CMK-3之奈米通道內,做為鋰離子電池陰極材料,藉CMK-3幫助LiFePO4在充放電過程中有較佳之電子傳導路徑,以彌補其電子導電性不佳之缺點。另一方面,將LiFePO4合成於限制空間中,期能將其均勻分散,以縮短鋰離子於充放電時嵌入/嵌出時之路徑。
此外,為了提高LiFePO4/ CMK-3複合材料中活性材料之比例,故將製程中所使用之蔗糖溶液濃度降低,期能有效提升介孔碳材之比表面積與孔洞體積,提升LiFePO4之含量,並提升複合材料的重量能量密度。
首先由XRD繞射分析之結果得知,複合材料中之LiFePO4材料皆為橄欖石結構。另一方面,奈米LiFePO4顆粒沉積於介孔內之現象
可由特性峰之半高寬較寬廣得到證實。而從SEM表面形態與SAXS結構分析得知,複合材料之形態仍為長條管狀形態,與CMK-3相似,且隨著碳源添加量減少,發現可將LiFePO4的含量提升至81 wt %,並維持長條管狀之巨觀結構,但內部規則介孔結構崩解形成不規則排列之介孔碳材。而Raman分析發現,碳材經由酸處理後,其石墨化程度並未有顯著差異,故能形成良好之電子傳導路徑,以改善LiFePO4導電度不佳的缺點。
LiFePO4/CMK-3複合陰極材料以鈕扣型電池組裝進行循環充放電性能測試,經過30圈高速充放電後,放電電容量無明顯衰退現象發生,LiFePO4/CMK-3(60%)於2C之高速充放電條件下,三十圈後其衰退率為1.64 % (1st和30th分別為116.2與114.3 mAh/g)。由此可知,將LiFePO4合成於CMK-3奈米通道內,可改善LiFePO4導電度不佳之缺點,使其在高充放電速率下表現出絕佳性能。


The purpose of the study is to synthesize LiFePO4 materials in the nanochannels of CMK-3 by the previously developed hydrophobic encapsulation route for Li ion battery cathodes. By employing the developed route, nano-sized LiFePO4 could be deposited in the confined space of CMK-3, which could compensate the poor electronic conductivity of LiFePO4 with the aid of continuous carbon mesostructure. Further, the synthesized LiFePO4 could be restricted in the confined space as well, resulting in reduction of the particle size. It would help to reduce the path for Li+ ions during intercalation/de-intercalation process. On the other hand, increase of LiFePO4 in LiFePO4/CMK-3 composite materials was examined by reducing the sucrose concentration during the preparation process. It would be helpful for increase of specific energy density of the composite materials.
The crystalline structure of the synthesized composite materials was determined to be Olivine-type structure, indicating the success of LiFePO4 in the composite materials. The observation also shows the broadening of the peaks, exhibiting degrees of LiFePO4 in the confined space. The content of LiFePO4 can be increased up to 81 wt % by reduction of the sucrose concentration during process, but, the carbon nano-rods in the CMK-3 shows no ordering, which may resulted from lowing the sucrose concentration. In addition, the degree of graphitization for all the composite materials shows no difference.
The charge-discharge cycling performances of the LiFePO4/CMK-3 composite materials were demonstrated by using coin cells. After 30 cycles, it was found that no obvious degradation was shown for the specific capacity even cycling at high C-rate (degradation rate of LiFePO4/CMK-3(60%) at 2C is only 1.64 %. The discharge capacity of 1st and 30th cycles are 116.2 and 114.3 mAh/g, respectively), indicating possible application in practice.

目錄 中文摘要………………………………………………………….………I 英文摘要………………………………………………………......……III 致謝………………………………………………………………....….. V 目錄……………………………………………………………...………V 圖目錄…………………………………………………………...…...…IX 表目錄….…………………………………………………...…...….....XV 第一章 緒論…………………………………………………………..1 1.1前言…………………………………………………………………1 1.2研究動機與目的……………………………………………………3 第二章 文獻回顧…………………………………..……….…………..5 2.1陽極……………………………………………………………5 2.2 電解質與隔離膜……………………………………………6 2.3陰極…………………………………………………………8 2.4鋰離子電池陰極材料發展之文獻回顧…………………….…...10 2.4.1 LiCoO2層狀結構之陰極材料…………………………...10 2.4.2 LiNiO2層狀結構之陰極材料....................................14 2.4.3 LixNi1-yCoyO2層狀結構之陰極材料...............................17 2.4.4 LixNi1-y-zCoyMnzO2層狀結構之陰極材料.......................21 2.4.5 Li[Li1/3-2x/3NixMn2/3-x/3]O2層狀結構之陰極材料......26 2.4.6. LiFePO4橄欖石結構之陰極材料............…......................33 2.4.6a鋰電池反應原理……………………………........38 固態燒結法……………………………........39 化學取代法……………………………....... 40 混碳燒結法………………………..…..........41 溶膠凝膠法…………………….………........ 42 水溶液沈澱法………………..…………........42 2.4.6b LiFePO4 陰極材料改質技術………….….…43 應用碳材進行改質……………………….….43 2.5 介孔碳材簡介…………………………………………………...50 2.5.1 微胞形成與模型………………………………………..57 2.5.2 區塊共聚合物概述……………………………………..60 2.5.3 孔洞結構示意圖………………………………………..63 2.5.4 碳材製備原理…………………………………………..65 2.5.4a. 單步驟合成法………………………………….65 2.5.5b 碳化……………………………………………65 2.5.5 碳材分析………………………………………...……….67 2.5.5a 吸附理論……………………………...……….67 第三章 實驗方法和儀器設備……………………………………...….70 3.1 儀器設備……………………………………………………...…70 3.2 實驗藥品……………………………………………………...…72 3.3 實驗步驟……………………………………………………...…74 3.3.1 LiFePO4陰極材料之前驅物合成………………….…..…74 3.3.2 高表面積介孔碳材(CMK-3)之合成…………………….74 3.3.3 製備LiFePO4/CMK-3 複合陰極材料………….….……76 3.4 材料鑑定與分析……………………………………...…………80 3.4.1 XRD 粉末繞射分析………………………………….…80 3.4.2 EDX 元素分析……………………………………….…81 3.4.3 SEM 表面形態分析…………………………………….81 3.4.4 氮氣等溫吸/脫附儀 …………………………………….82 3.4.4a. BET (Brunauer-Emmett-Teller)表面積之求法…..82 3.4.4b. 孔洞大小分布圖………………………………...82 3.4.5 Raman光譜鑑定……………………………………….…84 3.4.6 TGA 分析…………………………………………….…84 3.5 陰極極片製備……………………………………………...……85 3.6 鈕扣型電池組裝…………………………………………...……87 3.7 鈕扣型電池充放電測試分析…………………………………...89 第四章 實驗結果…………………………………………………...….90 4.1 碳材(CMK-3)鑑定與分析…………………………………..…..90 4.1.1 掃瞄式電子顯微鏡(SEM)表面型態及EDX元素分析…90 4.1.2 SAXS分析討論…………………………………….…107 4.1.3 BET 表面積量測及孔隙分析……………………...…111 4.1.4 Raman 光譜鑑定………………………………...……118 4.2 LiFePO4/CMK-3 鑑定分析…………………………………….122 4.2.1 X光繞射結構分析…………………………………….122 4.2.2 掃描式電子顯微鏡觀測………………………………125 4.2.3 BET 表面積量測及孔隙分析………………………...130 4.2.4 TGA 分析討論………………………………………..131 4.3 鈕扣型電池充放電性能測試………………………………….135 第五章 綜合討論………………………………………………..……153 5.1 以溶膠凝膠法合成LiFePO4並嵌入添加不同量之碳源所 製備的CMK-3複合陰極材料其結構、電性之探討…..........153 第六章 結論…………………………………………..………………158 第七章 參考文獻…………………………………………………..…160

1. J. I. Yamaki, S. I. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, "A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte," Journal of Power Sources 74, 219-227 (1998).
2. J. J. B. C. Delmas, P. Haginmuller, "A new variety of
LiCoO2 with an unusual oxygen packing obtained by exchange reaction," Mater. Res. Bull 17 (1982).
3. J. Molenda, A. Stok?osa, and T. Bak, "Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties," Solid State Ionics 36, 53-58 (1989).
4. S. Passerini, B. Scrosati, and A. Gorenstein, "Intercalation of lithium in nickel oxide and its electrochromic properties," Journal of the Electrochemical Society 137, 3297-3300 (1990).
5. U. V. S. J. R. Dahn, C. A. Michal, "Structure and
electrochemistry of Li(1+x)NiO2 and a new Li2NiO2 phase with the Ni(OH) 2 structure," Solid State Ionics 44 (1990).
6. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "Li//xCoO//2 (0 less than x less than equivalent to 1): A new cathode material for batteries of high energe density," Materials Research Bulletin 15, 783-789 (1980).
7. M. M. T. R. J. Gummow, E. I. F. Davdid, S. Hull, Mat.
Res. Bull 27 (1992).
8. B. Garcia, J. Farcy, J. P. Pereira-Ramos, and N. Baffier, "Electrochemical properties of low temperature crystallized LiCoO2," Journal of the Electrochemical Society 144, 1179-1184 (1997).
9. L. D. Dyer, B. S. Borie Jr, and G. P. Smith, "Alkali metal-nickel oxides of the type MNiO2," Journal of the American Chemical Society 76, 1499-1503 (1954).
10. J. B. Goodenough, D. G. Wickham, and W. J. Croft, "Some Ferrimagnetic Properties of the System LixNi1-xO," Journal of Applied Physics 29, 382-383 (1958).
11. A. Rougier, P. Gravereau, and C. Delmas, "Optimization of the composition of the Li1-zNi1+zO2 electrode materials: Structural, magnetic, and electrochemical studies," Journal of the Electrochemical Society 143, 1168-1175 (1996).
12. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, "Comparative study of LiCoO2, LiNi1/2Co 1/2O2 and LiNiO2 for 4 volt secondary lithium cells," Electrochimica Acta 38, 1159-1167 (1993).
13. C. Delmas, and I. Saadoune, "Electrochemical and physical properties of the LixNi1-yCoyO2 phases," Solid State Ionics 53-56, 370-375 (1992).
14. C. Delmas, I. Saadoune, and A. Rougier, "The cycling properties of the LixNi1-yCoyO2 electrode," Journal of Power Sources 44, 595-602 (1993).
15. J. Cho, G. Kim, and H. S. Lim, "Effect of preparation methods of LiNi1-x.CoxO2 cathode materials on their chemical structure and electrode performance," Journal of the Electrochemical Society 146, 3571-3576 (1999).
16. D. Caurant, N. Baffier, B. Garcia, and J. P. Pereira-Ramos, "Synthesis by a soft chemistry route and characterization of LiNixCo1-xO2 (0 < x <1) cathode materials," Solid State Ionics 91, 45-54 (1996).
17. R. J. Gummow, and M. M. Thackeray, "Lithium-cobalt-nickel-oxide cathode materials prepared at 400°C for rechargeable lithium batteries," Solid State Ionics 53-56, 681-687 (1992).
18. R. Stoyanova, E. Zhecheva, and L. Zarkova, "Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1-yO2 solid solutions," Solid State Ionics 73, 233-240 (1994).
19. E. Zhecheva, and R. Stoyanova, "Stabilization of the layered crystal structure of LiNiO2 by Co-substitution," Solid State Ionics 66, 143-149 (1993).
20. B. Banov, J. Bourilkov, and M. Mladenov, "Cobalt stabilized layered lithium-nickel oxides, cathodes in lithium rechargeable cells," Journal of Power Sources 54, 268-270 (1995).
21. Z. Liu, A. Yu, and J. Y. Lee, "Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries," Journal of Power Sources 81-82, 416-419 (1999).
22. M. Yoshio, H. Noguchi, J. I. Itoh, M. Okada, and T. Mouri, "Preparation and properties of LiCoyMnxNi1-x-yO2 as a cathode for lithium ion batteries," Journal of Power Sources 90, 176-181 (2000).
23. B. J. Hwang, Y. W. Tsai, C. H. Chen, and R. Santhanam, "Influence of Mn content on the morphology and electrochemical performance of LiNi1-x-yCoxMnyO2 cathode materials," Journal of Materials Chemistry 13, 1962-1968 (2003).
24. T. Ohzuku, and Y. Makimura, "Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries," Chemistry Letters, 642-643 (2001).
25. B. J. Hwang, Y. W. Tsai, D. Carlier, and G. Ceder, "A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2," Chemistry of Materials 15, 3676-3682 (2003).
26. S. A. H. S. H. Y., A. R. Armstrong, P. G. Bruce , R. Gitzendanner, C. S. Johnson ,Thackeray M. M., "Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging," J. Electrochem. Soc. 146 (1999).
27. K. Numata, C. Sakaki, and S. Yamanaka, "Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3," Solid State Ionics 117, 257-263 (1999).
28. Z. Lu, and J. R. Dahn, "Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies," Journal of the Electrochemical Society 149, A815-A822 (2002).
29. Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, and J. R. Dahn, "Synthesis structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2," Journal of the Electrochemical Society 149, A778-A791 (2002).
30. Z. Lu, D. D. MacNeil, and J. R. Dahn, "Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries," Electrochemical and Solid-State Letters 4, A191-A194 (2001).
31. Y. J. P. Y. S. Hong, K. S. Ryu, S. H. Chang, M. G. Kim, "Synthesis and electrochemical properties of nanocrystalline Li[NixLi1/3-2x/3Mn2/3-x/3]O2 prepared by a simple combustion method," J. Mater. Chem 14 (2004).
32. a. M. Y. S. I. Kwon, "Electrochemical properties of LiCoyMn2−yO4 synthesized by the combustion method for lithium secondary battery," Solid State Ionics 158 (2003).
33. K. C. P. S. S. Manoharan, "Combustion Synthesis of Metal Chromite Powders , Combustion Synthesis of Metal Chromite Powders " J. Am. Ceram. Soc 75 (1992).
34. 唐宏怡., "磷酸鐵鋰陰極材料研究," 國立暨南國際大學.
應用化學研究所碩士論文 (2004).
35. A. S. Andersson, B. Kalska, P. Eyob, D. Aernout, L. Ha?ggstro?m, and J. O. Thomas, "Lithium insertion into rhombohedral Li3Fe2(PO4)3," Solid State Ionics 140, 63-70 (2001).
36. K. M. M. T. M. Manickam, "Synthesis and electrochemical properties of TiNb (PO4)3 cathode materials for lithium secondary batteries," J. Electrochem. Soc. 150 (2003).
37. J. T. B. Y. M. C. S. Y. Chung, "Electronically conductive phospho-olivines as lithium storage electrodes," Nature Materials 1 (2002).
38. A. V. d. V. G. G. D. Moragn, Electrochem. Solid-State Lett 7 (2004).
39. S.-Y. C. Y.-N. Xu, J. T. Bloking & Y.-M. Chiang, "Electronic structure and electrical conductivity of undoped LiFePO4," Electrochem.Solid-State Lett 7 (2004).
40. K. S. N. A. K. Padhi, C. Masquelier, S. Okada & J. B.Goodenough, J. Electrochem. Soc. 144 (1997).
41. G. C. Kuczynski, "Study of the sintering of glass," Journal of Applied Physics 20, 1160-1163 (1949).
42. H. A. M. T. G.-H. Li, "LiMnPO4 as the Cathode for Lithium Batteries," J. Electrochem. Soc. 149 (2004).
43. K. F. Hsu, S. Y. Tsay, and B. J. Hwang, "Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route," Journal of Materials Chemistry 14, 2690-2695 (2004).
44. X. Li, F. Kang, and W. Shen, "Multiwalled carbon nanotubes as a conducting additive in a LiNi 0.7Co0.3O2 cathode for rechargeable lithium batteries," Carbon 44, 1334-1336 (2006).
45. Y. Hu, M. M. Doeff, R. Kostecki, and R. Finones, "Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries," Journal of the Electrochemical Society 151, A1279-A1285 (2004).
46. M. R. Roberts, A. D. Spong, G. Vitins, and J. R. Owen, "High throughput screening of the effect of carbon coating in LiFePO4 electrodes," Journal of the Electrochemical Society 154, A921-A928 (2007).
47. 王士豪, "中孔洞氧化矽材料與孔洞碳材之合成與應用," 國立成功大學, 化學系碩士班碩士論文.
48. J. E. R. V. Chiola, C.D. Vanderpool, US Patent No. 3 556 725 (1971).
49. F. Di Renzo, H. Cambon, and R. Dutartre, "A 28-year-old synthesis of micelle-templated mesoporous silica," Microporous Materials 10, 283-286 (1997).
50. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism," Nature 359, 710-712 (1992).
51. J. C. V. J.S. Beck, W.J. Roth, M.E. Leonowicz, C.T.Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard,S.B. McCullen, J.B.Higgins, J.L. Schlenker, J. Am. Chem.Soc 114 (1992).
52. 蘇銘傳, " Invesigation of carbon nanotubes grown on carbon cloth for DMFC applications," 台灣科技大學碩士論文, (2004).
53. J. H. K. Knox, B.; Millward, G. R. J. Chromatogr,, 352 (1986).
54. M. J. M. Kruk, R. Ryoo and S. H. Joo, "Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction," J. Phys. Chem B, 2000,104, 7960. (2000).
55. M. K. Y. Sakamoto, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin and Ryong Ryoo, Nature 408, 449. (2000).
56. M. Kruk, M. Jaroniec, R. Ryoo, and S. H. Joo, "Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates," Journal of Physical Chemistry B 104, 7960-7968 (2000).
57. K. S. a. T. H. J. Lee, Chem. Comm 2674 (2002).
58. W. W. L. a. G. D. Stucky, Chem. Mater 14, 1665 (2002).
59. D. F. Zhao, Jianglin.; Huo, Qisgeng.; Melosh, and G. H. C. Nicholas.; Fredrickson, Bradley. F.; Stucky, Galen. D., Science 279, 548 (1998.).
60. J. S. V. Beck, J. C,; Roth, W, J.; Leonowicz, M. E.; C, T.;Schmitt, Kresge. K. D.; Chu, C. T. W.; Olsen, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. , J. Am. Chem. Soc 114,10834 (1992).
61. C. T. L. Kresge, M. E.; Roth, W. J. C.; Beck, J. S., "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism," Nature 359, 710 (1992).
62. S. H. J. R. Ryoo, M. Kruk, and M. Jaroniec,, "Ordered mesoporous carbons " Adv. Mater 13, No. 9, 677. (2001).
63. M. J. M. Kruk, T.-W. Kim, and R. Ryoo,, "Synthesis and characterization of hexagonally ordered carbon nanopipes," Chem. Mater 15, 2815 ( 2003).
64. 張正明, "酸性溶液下中孔徑分子篩的反應機構之探討," 中原大學,化學系碩士學位論文 (2002).
65. J. W. Mc Bain, Colloid Chemistry, Theoretical and Applied Reinhold, New York (1944).
66. R. H. S. Mattoon, R. S.; Harkins, W. D., J. Phys. Chem. 15, 209. (1947).
67. W. D. Harkins, A cylindrical model for the small soap micelle, J. Phys. Chem. 16, 156. ( 1948).
68. P. A. Debye, E. W. , J. Phys. Colloid Chem. 55, 644. (1951).
69. I. Reich, J. Phys. Chem. 60, 257. (1956).
70. J. B. P. Hayter, J. Chem. Soc. Faraday Trans. 1 77,1851. ( 1981).
71. D. W. R. Gruen, "Standard picture if ionic micelles," Progr. Colloid Polym. Sci. 70, 6. (1985).
72. D. W. R. Gruen, J. Phys. Chem 89, 146. (1985).
73. B. D. Cabane, R.; Zemb, T. J. , Phys. (paris) 46, 2161. (1985).
74. W. L. Courchene, J. Phys. Chem. 68, 1870. ( 1964).
75. Y. S. Iwadare, T. Nippon Kagaku Zasshi 90, 1106. (1969).
76. D. C. Bendedouch, S. H.; Koeler, W. C. , J. Phys. Chem. 87,2621. (1983).
77. Y. C. Chevalier, "NMR investigation of the micellar properties of monoalkylphosphates.," C,Colloid polym. Sci 262, 489. (1984).
78. T. H. Kawaguchi, T.; Mitsui, T. , J. Colloid Interface Sci. 105,, 96, 437. (1983).
79. R. Hunter, J. Foundations of colloid science (1987.).
80. 王奕凱, 李秉傑合譯, "非均勻系催化原理及應用," 國立編譯館, 渤海堂文化公司, 台北 (1993).
81. E. P. J. Barrett, L. S.; Halenda, P. P., J. Am. Chem. Soc 73, 373. (1951).
82. G. S. Hartle, "Aqueous Solutions of Paraffin-Chain Salts Hermann," Paris (1936.).
83. S. J. S. Gregg, K. S. W., "Adsorption, Surface Area and Porosity,2nd Ed.Academic press,," New York, NY (1982).
84. V. C. L. Calvillo, R. Moliner, P.L. Cabot, I. Esparbe, M.J. Lazaro, "Control of textural properties of ordered mesoporous materials," Micropor. Mesopor. Mater (2008).
85. G. C. Jae-Kwang Kim, Jou-Hyeon Ahn, Gil-Chan Hwang,Jin-Beom Choi, "Electrochemical properties of carbon-coated LiFePO4 synthesizedby a modified mechanical activation process," Journal of Physics and Chemistry of Solid 03.018 (2008).
86. 蕭楷模, "The Preparation and Characterization of olivine LiFePO4
by a solution method," 大同大學,材料工程研究所碩士論文 (2004).

QR CODE