簡易檢索 / 詳目顯示

研究生: 蕭以昌
Yi-Chang Xiao
論文名稱: 以甘蔗渣水解後的殘渣製造固體酸催化劑催化油酸和甲醇之酯化反應
Solid acid catalyst from post-hydrolyzed sugarcane bagasse residue for the esterification of oleic acid and methanol
指導教授: 吳耀豐
Alchris Woo Go
朱義旭
Yi-Hsu Ju
口試委員: 翁玉鑽
Artik Elisa Angkawijaya
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 111
中文關鍵詞: 甘蔗渣稀酸水解固體酸觸媒酯化反應
外文關鍵詞: Sugarcane bagasse, Dilute acid hydrolysis, Solid acid catalyst, Esterification
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探索了一種全新方法製備固體酸催化劑,透過稀酸水解甘蔗渣 ,然後同時碳化和磺化水解後的殘渣。在稀酸水解甘蔗渣中調查了一定範圍的溶劑與固體比 (7.5, 10, 12.5 mL/g)、硫酸濃度 (2, 4, 6 wt.%) 和720分鐘內測定對糖產量、糖濃度和抑製劑濃度的影響。從稀酸水解甘蔗渣後收集的殘渣,在一定溫度(100, 125, 150 ℃)和時間(12, 24, 36 h)範圍內進行同時碳化和磺化。由稀酸水解甘蔗渣以溶劑與固體比為10 mL/g、 4 wt.%的硫酸與100 °C下進行2小時,隨後同時磺化和碳化水解後殘渣在125 ℃ 與 36小時下製備的固體酸觸媒具有強酸密度為 2.83 ± 0.03 mmol H+/g,並在催化油酸與甲醇之酯化反應中,以甲醇與油酸莫爾比5、催化劑負載為15 wt.%、200 rpm、60 °C與24小時為最佳化反應條件進行,可以達到產物中脂肪酸甲酯含量為 96.45 ± 0.09 % ,並且可以使用至少七次循環,即使在第七次循環之後仍保留其原始催化活性的38%。此研究提出了一種以甘蔗渣合成碳基固體酸觸媒與從中回收可用的糖的替代方法。


A new approach on the preparation of solid acid catalyst (SAC) from sugarcane bagasse (SCB) via a series of dilute acid hydrolysis (DAH), carbonization, and sulfonation was explored. A range of parameters; solvent to solid ratio (SSR, 7.5, 10, 12.5 mL/g), sulfuric acid concentration (2, 4, 6 wt.%), and a period of 720 minutes; were used during DAH of SCB to determine their effects on of sugar yield, sugar concentration, and inhibitor concentration. The PHSCBs collected from DAH were subsequently carbonized and sulfonated simultaneously over a range of temperature (100, 125, 150 ℃) and time (12, 24, 36 h). The SAC prepared from DAH of SCB at SSR of 10 mL/g, with 4 wt.% acid for 2 h at 100 °C and subsequent sulfonation and carbonization at 125 ℃ for 36 h (SCB-SAC-10-125-36) possess a strong acid density 2.83 ± 0.03 mmol H+/g and performed among the synthesized SAC during the esterification of oleic acid and methanol. Under favorable conditions methanol to oleic acid ratio 5, 15 wt.% catalyst loading and 200 rpm at 60 ℃ for 24 h, 96.45 ± 0.09 of FAME content in the product could be achieved. It could be used for at least seven cycles while retaining 38 % of its original catalytic activity even after the seventh cycle. This work presents an alternative approach in the synthesis of carbon-based SAC from SCB while allowing recovery of available sugars.

摘要 2 ABSTRACT 3 ACKNOWLEDGEMENT 4 TABLE OF CONTENTS 5 LIST OF FIGURES 8 LIST OF TABLES 10 LIST OF ABBREVIATIONS 11 CHAPTER 1. BACKGROUND OF STUDY 12 1.1. Introduction 12 1.2. Goal and objectives 16 1.3. Significance of the study 17 1.4 Scope and Limitations 18 CHAPTER 2. REVIEW OF RELATED LITERATURE 19 2.1. Sugarcane bagasse (SCB) 19 2.1.1. Production and availability 20 2.1.2. Characteristics and current use 22 2.2. Recovery of sugar from SCB 24 2.2.1. Hydrolysis with the aid of acid at high concentrations 24 2.2.2. Hydrolysis with the aid of enzymes 26 2.2.3. Hydrolysis under supercritical water conditions 27 2.2.4 Hydrolysis with the aid of dilute acid and/or subcritical water conditions 28 2.3. Carbon-based solid acid catalyst 29 2.3.1. Sulfonation of carbon-based or carbonaceous material 29 2.3.2. Carbonization of sugars and subsequent sulfonation 30 2.3.3. Carbonization of lignin and subsequent sulfonation 32 2.3.4. Carbonization of lignocellulosic biomass and subsequent sulfonation 32 2.3.5. Simultaneous carbonization and sulfonation 33 2.4 Synthesis of solid acid catalyst using SCB for application biodiesel 34 2.4.1. Carbonization and subsequent sulfonation 35 2.4.2. Hydrothermal pretreatment, carbonization and subsequent sulfonation 36 2.4.3. Direct sulfonation or simultaneous carbonization and sulfonation 37 2.5. Esterification of free fatty acids with carbon-based solid acid catalysts 37 2.5.1. Factor affecting the esterification process 37 2.5.2. Regeneration and reusability of carbon-based solid acid catalyst 39 2.6. Potential synthesis of SAC from SCB via DAH and subsequent direct sulfonation 42 CHAPTER 3. MATERIALS AND METHODS 43 3.1. Collection and storage of SCB 43 3.1.1. Moisture content of SCB 44 3.2. Determination of Structural Carbohydrates in SCB 44 3.3. Estimation of the total sugar content by the dinitrosalicy acid method 44 3.4. Estimation of the total inhibitor content by the HPLC 46 3.5. Diluted acid hydrolysis of sugarcane bagasse 47 3.5.1. Small scale 47 3.5.2. Large scale 49 3.6. Simultaneously carbonized and sulfonated PHSCB as the solid acid catalyst 50 3.7. Catalyst characterization of a solid acid catalyst and sugarcane bagasse 50 3.7.1. Particle size distribution 50 3.7.2. Strong acid density 51 3.7.3. Total acid density 52 3.7.4. Fourier Transform Infrared Spectrometer analysis 53 3.7.5. Surface Area and Pore size distribution 53 3.7.6. Thermogravimetric Analysis 53 3.7.7. FESEM-EDX analysis 55 3.8. Esterification activity of solid acid catalyst 55 3.9. Esterification of oleic acid with methanol using SCB-SAC 57 3.10. Reusability of sulfonated PHSCB as a catalyst during the esterification 58 CHAPTER 4. RESULTS AND DISCUSSION 60 4.1. Diluted acid hydrolysis of SCB 61 4.2. Simultaneously carbonized and sulfonated PHSCB as the solid acid catalyst 69 4.3. Esterification of oleic acid with SCB-SAC 79 4.4. Reusability of SCB-SAC 84 CHAPTER 5. CONCLUSION 89 REFERENCES 90 APPENDIX A 106 APPENDIX B 109

[1]W.Wang, F.Li, H.Wang, Study of light wavelength on the oxidative stability of Jatropha biodiesel, Fuel. 292 (2021) 120230. https://doi.org/10.1016/j.fuel.2021.120230.
[2]P.V.Navaneeth, C.K.Suraj, P.S.Mehta, K.Anand, Predicting the effect of biodiesel composition on the performance and emission of a compression ignition engine using a phenomenological model, Fuel. 293 (2021) 120453. https://doi.org/10.1016/j.fuel.2021.120453.
[3]M.Meira, C.M.Quintella, E.M.O.Ribeiro, H.R.G.Silva, A.K.Guimarães, Overview of the challenges in the production of biodiesel, Biomass Convers. Biorefinery. 5 (2015) 321–329. https://doi.org/10.1007/s13399-014-0146-2.
[4]M.M.R.Talukder, J.C.Wu, L.P.L.Chua, Conversion of waste cooking oil to biodiesel via enzymatic hydrolysis followed by chemical esterification, Energy and Fuels. 24 (2010) 2016–2019. https://doi.org/10.1021/ef9011824.
[5]H.Zabed, J.N.Sahu, A.Suely, A.N.Boyce, G.Faruq, Bioethanol production from renewable sources: Current perspectives and technological progress, Renew. Sustain. Energy Rev. 71 (2017) 475–501. https://doi.org/10.1016/j.rser.2016.12.076.
[6]S.Singh, G.Cheng, N.Sathitsuksanoh, D.Wu, P.Varanasi, A.George, V.Balan, X.Gao, R.Kumar, B.E.Dale, C.E.Wyman, B.A.Simmons, Comparison of different biomass pretreatment techniques and their impact on chemistry and structure, Front. Energy Res. 3 (2015) 1–12. https://doi.org/10.3389/fenrg.2014.00062.
[7]F.K.Kazi, J.A.Fortman, R.P.Anex, D.D.Hsu, A.Aden, A.Dutta, G.Kothandaraman, Techno-economic comparison of process technologies for biochemical ethanol production from corn stover, Fuel. 89 (2010) S20–S28. https://doi.org/10.1016/j.fuel.2010.01.001.
[8]M.L.Savaliya, B.Z.Dholakiya, A simpler and highly efficient protocol for the preparation of biodiesel from soap stock oil using a BBSA catalyst, RSC Adv. 5 (2015) 74416–74424. https://doi.org/10.1039/c5ra13422f.
[9]J.Wongwatanapaiboon, K.Kangvansaichol, V.Burapatana, R.Inochanon, P.Winayanuwattikun, T.Yongvanich, W.Chulalaksananukul, The potential of cellulosic ethanol production from grasses in Thailand, J. Biomed. Biotechnol. 2012 (2012). https://doi.org/10.1155/2012/303748.
[10]M.Hara, T.Yoshida, A.Takagaki, T.Takata, J.N.Kondo, S.Hayashi, K.Domen, A carbon material as a strong protonic acid, Angew. Chemie - Int. Ed. 43 (2004) 2955–2958. https://doi.org/10.1002/anie.200453947.
[11]L.J.Konwar, J.Boro, D.Deka, Review on latest developments in biodiesel production using carbon-based catalysts, Renew. Sustain. Energy Rev. 29 (2014) 546–564. https://doi.org/10.1016/j.rser.2013.09.003.
[12]E.T.Lu, S.G.Love, Gravitational tractor for towing asteroids, Nature. 438 (2005) 177–178. https://doi.org/10.1038/438177a.
[13]J.Clohessy, W.Kwapinski, applied sciences Carbon-Based Catalysts for Biodiesel Production — A Review, (2020) 1–17.
[14]Y.Zhu, Z.Li, J.Chen, Applications of lignin-derived catalysts for green synthesis, Green Energy Environ. 4 (2019) 210–244. https://doi.org/10.1016/j.gee.2019.01.003.
[15]W.Mateo, H.Lei, E.Villota, M.Qian, Y.Zhao, E.Huo, Q.Zhang, X.Lin, C.Wang, One-step synthesis of biomass-based sulfonated carbon catalyst by direct carbonization-sulfonation for organosolv delignification, Bioresour. Technol. 319 (2021) 124194. https://doi.org/10.1016/j.biortech.2020.124194.
[16]V.Kumar, S.Agnihotri, M.Jaiswal, R.Arora, A Sustainable Technology for Production of Biodiesel from Waste Rice Bran Oil Fatty Acids Using Wheat husk as a Green Catalyst, (2017) 775–782.
[17]H.Xiao, Y.Guo, X.Liang, C.Qi, Journal of Solid State Chemistry One-step synthesis of novel biacidic carbon via hydrothermal carbonization, J. Solid State Chem. 183 (2010) 1721–1725. https://doi.org/10.1016/j.jssc.2010.05.020.
[18]I.Thushari, S.Babel, Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production, Bioresour. Technol. (2017). https://doi.org/10.1016/j.biortech.2017.06.106.
[19]A.W.Go, A.T.Conag, R.M.B.Igdon, A.S.Toledo, J.S.Malila, Potentials of agricultural and agro-industrial crop residues for the displacement of fossil fuels: A Philippine context, Energy Strateg. Rev. 23 (2019) 100–113. https://doi.org/10.1016/j.esr.2018.12.010.
[20]Alokika, Anu, A.Kumar, V.Kumar, B.Singh, Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective, Int. J. Biol. Macromol. 169 (2021) 564–582. https://doi.org/10.1016/j.ijbiomac.2020.12.175.
[21]S.K.Pramanik, S.Mahmud, G.K.Paul, T.Jabin, K.Naher, M.S.Uddin, S.Zaman, M.A.Saleh, Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase, Curr. Res. Microb. Sci. 2 (2021) 100013. https://doi.org/10.1016/j.crmicr.2020.100013.
[22]A.T.Conag, J.E.R.Villahermosa, L.K.Cabatingan, A.W.Go, Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere, J. Environ. Chem. Eng. 5 (2017) 5411–5419. https://doi.org/10.1016/j.jece.2017.10.032.
[23]W.Y.Lou, Q.Guo, W.J.Chen, M.H.Zong, H.Wu, T.J.Smith, A highly active bagasse-derived solid acid catalyst with properties suitable for production of biodiesel, ChemSusChem. 5 (2012) 1533–1541. https://doi.org/10.1002/cssc.201100811.
[24]L.H.Chin, A.Z.Abdullah, B.H.Hameed, Sugar cane bagasse as solid catalyst for synthesis of methyl esters from palm fatty acid distillate, Chem. Eng. J. 183 (2012) 104–107. https://doi.org/10.1016/j.cej.2011.12.028.
[25]F.Ezebor, M.Khairuddean, A.Z.Abdullah, P.L.Boey, Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters, Energy. 70 (2014) 493–503. https://doi.org/10.1016/j.energy.2014.04.024.
[26]M.L.Savaliya, B.Z.Dholakiya, A simpler and highly e ffi cient protocol for the preparation of biodiesel from soap stock oil using a BBSA catalyst †, (2015) 74416–74424. https://doi.org/10.1039/c5ra13422f.
[27]K.P.Flores, J.L.O.Omega, L.K.Cabatingan, A.W.Go, R.C.Agapay, Y.H.Ju, Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol, Renew. Energy. 130 (2019) 510–523. https://doi.org/10.1016/j.renene.2018.06.093.
[28]M.Zhang, A.Sun, Y.Meng, L.Wang, H.Jiang, G.Li, Catalytic Performance of Biomass Carbon-Based Solid Acid Catalyst for Esterification of Free Fatty Acids in Waste Cooking Oil, Catal. Surv. from Asia. 19 (2015) 61–67. https://doi.org/10.1007/s10563-014-9182-y.
[29]S.Chatterjee, S.Venkata Mohan, Simultaneous Production of Green Hydrogen and Bioethanol from Segregated Sugarcane Bagasse Hydrolysate Streams with Circular Biorefinery Design, Chem. Eng. J. (2021) 130386. https://doi.org/10.1016/j.cej.2021.130386.
[30]T.J.Rainey, G.Covey, Pulp and paper production from sugarcane bagasse, Sugarcane-Based Biofuels Bioprod. (2016) 259–280. https://doi.org/10.1002/9781118719862.ch10.
[31]H.Su, G.Liu, M.He, F.Tan, A biorefining process: Sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse, Bioresour. Technol. 187 (2015) 149–160. https://doi.org/10.1016/j.biortech.2015.03.107.
[32]S.Singh, V.Kumar, S.Datta, D.S.Dhanjal, K.Sharma, J.Samuel, J.Singh, Current advancement and future prospect of biosorbents for bioremediation, Sci. Total Environ. 709 (2020) 135895. https://doi.org/10.1016/j.scitotenv.2019.135895.
[33]Biofuel Production - Greater Shares of Commodities Used, Crop Cite. (2010).
[34]The Food and Agriculture Organization of the United Nation http://www.fao.org/get-involved/ask-fao/en/, (n.d.).
[35]E.Martinez-Hernandez, M.A.Amezcua-Allieri, J.Sadhukhan, J.A.Anell, Sugarcane Bagasse Valorization Strategies for Bioethanol and Energy Production, Sugarcane - Technol. Res. (2018). https://doi.org/10.5772/intechopen.72237.
[36]International Sugar Organization https://www.isosugar.org/sugarsector/sugar, (n.d.).
[37]R.Behnood, B.Anvaripour, N.Jaafarzadeh, M.Farasati, Oil spill sorption using raw and acetylated sugarcane bagasse, J. Cent. South Univ. 23 (2016) 1618–1625. https://doi.org/10.1007/s11771-016-3216-8.
[38]S.Samadi, M.Mohammadi, G.Najafpour, Production of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor, Int. J. Eng. 29 (2016). https://doi.org/10.5829/idosi.ije.2016.29.08b.01.
[39]S.Yao, S.Nie, Y.Yuan, S.Wang, C.Qin, Efficient extraction of bagasse hemicelluloses and characterization of solid remainder, Bioresour. Technol. 185 (2015) 21–27. https://doi.org/10.1016/j.biortech.2015.02.052.
[40]S.AlArni, Extraction and isolation methods for lignin separation from sugarcane bagasse: A review, Ind. Crops Prod. 115 (2018) 330–339. https://doi.org/10.1016/j.indcrop.2018.02.012.
[41]A.Samariha, A.Tabei, A.Hooman Hemmasi, M.Nemati, A.Khakifirooz, Study of Morphological and Chemical Composition of Fibers from Iranian Sugarcane Bagasse, J. Agric. Environ. Sci. 11 (2011) 478–481. https://www.researchgate.net/publication/347503033.
[42]M.P.G.Vijerathna, I.Wijesekara, R.Perera, S.M.T.A.Maralanda, M.Jayasinghe, I.Wickramasinghe, Physico-chemical Characterization of Cookies Supplemented with Sugarcane Bagasse Fibres, Vidyodaya J. Sci. 22 (2019) 29. https://doi.org/10.4038/vjs.v22i1.6062.
[43]Y.Wang, F.Hou, H.Xu, J.Li, C.Miao, S.Lu, W.Cao, C.Sun, Integrated methane production improvement from sugarcane rind by microwave coupled calcium hydroxide pretreatment, Fuel. 246 (2019) 402–407. https://doi.org/10.1016/j.fuel.2019.03.001.
[44]C.Sun, Y.Xie, F.Hou, Q.Yu, Y.Wang, X.Wang, C.Miao, J.Ma, W.Ge, T.Zhang, W.Cao, Y.Zhao, Enhancement on methane production and anaerobic digestion stability via co-digestion of microwave-Ca(OH)2 pretreated sugarcane rind slurry and kitchen waste, J. Clean. Prod. 264 (2020) 121731. https://doi.org/10.1016/j.jclepro.2020.121731.
[45]L.A.Soares, E.L.Silva, M.B.A.Varesche, Dissecting the role of heterogeneity and hydrothermal pretreatment of sugarcane bagasse in metabolic pathways for biofuels production, Ind. Crops Prod. 160 (2021). https://doi.org/10.1016/j.indcrop.2020.113120.
[46]P.S.Barbosa, M.H.P.Barbosa, B. de F.H.deFaria, R.F.Teófilo, Improvements in the Extractive and Carbohydrate Analysis of Sugarcane Bagasse, Waste and Biomass Valorization. (2020). https://doi.org/10.1007/s12649-020-01268-y.
[47]C.Kuchelmeister, S.Bauer, Rapid Small-Scale Determination of Extractives in Biomass, Bioenergy Res. 8 (2015) 68–76. https://doi.org/10.1007/s12155-014-9493-x.
[48]N.V.Hoang, A.Furtado, L.Donnan, E.C.Keeffe, F.C.Botha, R.J.Henry, High-Throughput Profiling of the Fiber and Sugar Composition of Sugarcane Biomass, Bioenergy Res. 10 (2017) 400–416. https://doi.org/10.1007/s12155-016-9801-8.
[49]M.Weissgram, Biotechnological Generation of Value Added Products from Spent Pulping Liquors: Assessing the Potential of Extremophiles, J. Bioprocess. Biotech. 05 (2015). https://doi.org/10.4172/2155-9821.1000241.
[50]M.Iram, U.Asghar, M.Irfan, Z.Huma, S.Jamil, M.Nadeem, Q.Syed, Production of bioethanol from sugarcane bagasse using yeast strains: A kinetic study, Energy Sources, Part A Recover. Util. Environ. Eff. 40 (2018) 364–372. https://doi.org/10.1080/15567036.2017.1422056.
[51]P.Mishra, S.Krishnan, S.Rana, L.Singh, M.Sakinah, Z.Ab Wahid, Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass, Energy Strateg. Rev. 24 (2019) 27–37. https://doi.org/10.1016/j.esr.2019.01.001.
[52]M.Mamaye, Z.Kiflie, S.Feleke, A.Yimam, S.Anuradha Jabasingh, Valorization of Ethiopian Sugarcane Bagasse to Assess its Suitability for Pulp and Paper Production, Sugar Tech. 21 (2019) 995–1002. https://doi.org/10.1007/s12355-019-00724-x.
[53]G.A.P.DeAlmeida, M.DeAndrade Ferreira, J.DeLima Silva, J.C.C.Chagas, A.S.C.Véras, L.J.A.DeBarros, G.L.P.DeAlmeida, Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system, Asian-Australasian J. Anim. Sci. 31 (2018) 379–385. https://doi.org/10.5713/ajas.17.0205.
[54]L.Pereira, R.Mafalda, J.M.Marconcini, G.L.Mantovani, The use of sugarcane bagasse-based green materials for sustainable packaging design, Smart Innov. Syst. Technol. 35 (2015) 113–123. https://doi.org/10.1007/978-81-322-2229-3_10.
[55]Y.Jugwanth, Y.Sewsynker-Sukai, E.B.Gueguim Kana, Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies, Fuel. 262 (2020) 116552. https://doi.org/10.1016/j.fuel.2019.116552.
[56]M.Yadegary, A.Hamidi, S.A.Alavi, E.Khodaverdi, H.Yahaghi, S.Sattari, G.Bagherpour, E.Yahaghi, Citric acid production from sugarcane bagasse through solid state fermentation method using Aspergillus niger mold and optimization of citric acid production by Taguchi Method, Jundishapur J. Microbiol. 6 (2013). https://doi.org/10.5812/jjm.7625.
[57]D.Wischral, J.M.Arias, L.F.Modesto, D.deFrança Passos, N.Pereira, Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: Integrating xylose and glucose fermentation, Biotechnol. Prog. 35 (2019). https://doi.org/10.1002/btpr.2718.
[58]L.Xu, L.Liu, S.Li, W.Zheng, Y.Cui, R.Liu, W.Sun, Xylitol Production by Candida tropicalis 31949 from Sugarcane Bagasse Hydrolysate, Sugar Tech. 21 (2019) 341–347. https://doi.org/10.1007/s12355-018-0650-y.
[59]X.Zhou, Y.Xu, Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid, Bioresour. Technol. 282 (2019) 81–87. https://doi.org/10.1016/j.biortech.2019.02.129.
[60]S.N.Minnu, A.Bahurudeen, G.Athira, Comparison of sugarcane bagasse ash with fly ash and slag: An approach towards industrial acceptance of sugar industry waste in cleaner production of cement, J. Clean. Prod. 285 (2021) 124836. https://doi.org/10.1016/j.jclepro.2020.124836.
[61]M.A.S.Khalifa, N.A.N.N.Malek, A.Y.Farimani, N.S.Sani, A.A.Kamaru, Cetylpyridinium bromide (CPB)-treated sugarcane bagasse for the removal of chromate in aqueous solution, Mater. Today Proc. (2021) 2–7. https://doi.org/10.1016/j.matpr.2021.02.790.
[62]M.H.Nazir, M.Ayoub, I.Zahid, R.BinShamsuddin, S.Yusup, M.Ameen, Zulqarnain, M.U.Qadeer, Development of lignin based heterogeneous solid acid catalyst derived from sugarcane bagasse for microwave assisted-transesterification of waste cooking oil, Biomass and Bioenergy. 146 (2021). https://doi.org/10.1016/j.biombioe.2021.105978.
[63]W.Namchot, N.Panyacharay, W.Jonglertjunya, C.Sakdaronnarong, Hydrolysis of delignified sugarcane bagasse using hydrothermal technique catalyzed by carbonaceous acid catalysts, Fuel. 116 (2014) 608–616. https://doi.org/10.1016/j.fuel.2013.08.062.
[64]C.Liu, K.Zhang, Y.Liu, S.Wu, Esterification of levulinic acid into ethyl levulinate catalyzed by sulfonated bagasse-carbonized solid acid, BioResources. 14 (2019) 2186–2196. https://doi.org/10.15376/biores.14.1.2186-2196.
[65]Y.H.Jung, K.H.Kim, Acidic Pretreatment, Elsevier B.V., 2015. https://doi.org/10.1016/B978-0-12-800080-9.00003-7.
[66]K.K.Janga, M.B.Hägg, S.T.Moe, Influence of acid concentration, temperature, and time on decrystallization in two-stage concentrated sulfuric acid hydrolysis of pinewood and aspenwood: A statistical approach, BioResources. 7 (2012) 391–411.
[67]S.T.Moe, K.K.Janga, T.Hertzberg, M.B.Hägg, K.Øyaas, N.Dyrset, Saccharification of lignocellulosic biomass for biofuel and biorefinery applications A renaissance for the concentrated acid hydrolysis?, Energy Procedia. 20 (2012) 50–58. https://doi.org/10.1016/j.egypro.2012.03.007.
[68]Z.Y.Sun, Y.Q.Tang, T.Iwanaga, T.Sho, K.Kida, Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation, Bioresour. Technol. 102 (2011) 10929–10935. https://doi.org/10.1016/j.biortech.2011.09.071.
[69]J.Heinonen, T.Sainio, Chromatographic recovery of monosaccharides for the production of bioethanol from wood, Ind. Eng. Chem. Res. 49 (2010) 2907–2915. https://doi.org/10.1021/ie901598z.
[70]Y.P.Wijaya, R.D.D.Putra, V.T.Widyaya, J.M.Ha, D.J.Suh, C.S.Kim, Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass, Bioresour. Technol. 164 (2014) 221–231. https://doi.org/10.1016/j.biortech.2014.04.084.
[71]J.Iranmahboob, F.Nadim, S.Monemi, Optimizing acid-hydrolysis: A critical step for production of ethanol from mixed wood chips, Biomass and Bioenergy. 22 (2002) 401–404. https://doi.org/10.1016/S0961-9534(02)00016-8.
[72]M.deLourdes T.M. Polizeli, A.F.Somera, R.C.deLucas, M.S.F.Nozawa, M.Michelin, Enzymes Involved in the Biodegradation of Sugarcane Biomass: Challenges and Perspectives, in: M.S.Buckeridge, A.P.DeSouza (Eds.), Adv. Basic Sci. Second Gener. Bioethanol from Sugarcane, Springer International Publishing, Cham, 2017: pp. 55–79. https://doi.org/10.1007/978-3-319-49826-3_5.
[73]B.Qi, X.Chen, F.Shen, Y.Su, Y.Wan, Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology, Ind. Eng. Chem. Res. 48 (2009) 7346–7353. https://doi.org/10.1021/ie8016863.
[74]I.BenTaher, P.Fickers, S.Chniti, M.Hassouna, Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues, Biotechnol. Prog. 33 (2017) 397–406. https://doi.org/10.1002/btpr.2427.
[75]K.Robak, M.Balcerek, Current state-of-the-art in ethanol production from lignocellulosic feedstocks, Microbiol. Res. 240 (2020) 126534. https://doi.org/10.1016/j.micres.2020.126534.
[76]Y.Chen, M.A.Stevens, Y.Zhu, J.Holmes, H.Xu, Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification, Fuel Prod. from Non-Food Biomass Corn Stover. (2015) 131–153. https://doi.org/10.1201/b18437.
[77]R.Kumar, C.E.Wyman, Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies, Bioresour. Technol. 100 (2009) 4203–4213. https://doi.org/10.1016/j.biortech.2008.11.057.
[78]S.Ferreira, A.P.Duarte, M.H.L.Ribeiro, J.A.Queiroz, F.C.Domingues, Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production, Biochem. Eng. J. 45 (2009) 192–200. https://doi.org/10.1016/j.bej.2009.03.012.
[79]G.P.Maitan-Alfenas, E.M.Visser, V. ria M.Guimarães, Enzymatic hydrolysis of lignocellulosic biomass: Converting food waste in valuable products, Curr. Opin. Food Sci. 1 (2015) 44–49. https://doi.org/10.1016/j.cofs.2014.10.001.
[80]J.K.Saini, R.K.Anurag, A.Arya, B.K.Kumbhar, L.Tewari, Optimization of saccharification of sweet sorghum bagasse using response surface methodology, Ind. Crop. Prod. 44 (2013) 211–219. https://doi.org/10.1016/j.indcrop.2012.11.011.
[81]B.Qi, X.Chen, F.Shen, Y.Su, Y.Wan, Optimization of Enzymatic Hydrolysis of Wheat Straw Pretreated by Alkaline Peroxide Using Response Surface Methodology, (2009) 7346–7353.
[82]A.Ruangmee, C.Sangwichien, Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production, Energy Convers. Manag. 73 (2013) 381–388. https://doi.org/10.1016/j.enconman.2013.05.035.
[83]I.delCampo, I.Alegría, M.Zazpe, M.Echeverría, I.Echeverría, Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production, Ind. Crops Prod. 24 (2006) 214–221. https://doi.org/10.1016/j.indcrop.2006.06.014.
[84]T.C.G.Oliveira, K.E.Hanlon, M.A.Interlandi, P.C.Torres-Mayanga, M.A.C.Silvello, D.Lachos-Perez, M.T.Timko, M.A.Rostagno, R.Goldbeck, T.Forster-Carneiro, Subcritical water hydrolysis pretreatment of sugarcane bagasse to produce second generation ethanol, J. Supercrit. Fluids. 164 (2020) 104916. https://doi.org/10.1016/j.supflu.2020.104916.
[85]D.A.Cantero, L.Vaquerizo, F.Mato, M.D.Bermejo, M.J.Cocero, Energetic approach of biomass hydrolysis in supercritical water, Bioresour. Technol. 179 (2015) 136–143. https://doi.org/10.1016/j.biortech.2014.12.006.
[86]E.L.N.Escobar, T.A.daSilva, C.L.Pirich, M.L.Corazza, L.Pereira Ramos, Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation, Front. Bioeng. Biotechnol. 8 (2020) 1–18. https://doi.org/10.3389/fbioe.2020.00252.
[87]D.A.Cantero, C.Martínez, M.D.Bermejo, M.J.Cocero, Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis, Green Chem. 17 (2015) 610–618. https://doi.org/10.1039/c4gc01359j.
[88]J.M.Prado, D.Lachos-Perez, T.Forster-Carneiro, M.A.Rostagno, Sub- A nd supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review, Food Bioprod. Process. 98 (2016) 95–123. https://doi.org/10.1016/j.fbp.2015.11.004.
[89]D.A.Cantero, M.Dolores Bermejo, M.José Cocero, Reaction engineering for process intensification of supercritical water biomass refining, J. Supercrit. Fluids. 96 (2015) 21–35. https://doi.org/10.1016/j.supflu.2014.07.003.
[90]P.Khuwijitjaru, K.Watsanit, S.Adachi, Carbohydrate content and composition of product from subcritical water treatment of coconut meal, J. Ind. Eng. Chem. 18 (2012) 225–229. https://doi.org/10.1016/j.jiec.2011.11.010.
[91]C.Schacht, C.Zetzl, G.Brunner, From plant materials to ethanol by means of supercritical fluid technology, J. Supercrit. Fluids. 46 (2008) 299–321. https://doi.org/10.1016/j.supflu.2008.01.018.
[92]D.A.Cantero, Á.Sánchez Tapia, M.D.Bermejo, M.J.Cocero, Pressure and temperature effect on cellulose hydrolysis in pressurized water, Chem. Eng. J. 276 (2015) 145–154. https://doi.org/10.1016/j.cej.2015.04.076.
[93]P.Noparat, P.Prasertsan, S.O-Thong, X.Pan, Dilute Acid Pretreatment of Oil Palm Trunk Biomass at High Temperature for Enzymatic Hydrolysis, Elsevier B.V., 2015. https://doi.org/10.1016/j.egypro.2015.11.588.
[94]B.Lavarack, M.Sugar, G.Griffin, xylose , arabinose , glucose and other products The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose , arabinose , glucose and other products, 9534 (2002). https://doi.org/10.1016/S0961-9534(02)00066-1.
[95]P.Lenihan, A.Orozco, E.O’Neill, M.N.M.Ahmad, D.W.Rooney, G.M.Walker, Dilute acid hydrolysis of lignocellulosic biomass, Chem. Eng. J. 156 (2010) 395–403. https://doi.org/10.1016/j.cej.2009.10.061.
[96]O.Akpinar, K.Erdogan, S.Bostanci, Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials, Carbohydr. Res. 344 (2009) 660–666. https://doi.org/10.1016/j.carres.2009.01.015.
[97]N.Mosier, C.Wyman, B.Dale, R.Elander, Y.Y.Lee, M.Holtzapple, M.Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol. 96 (2005) 673–686. https://doi.org/10.1016/j.biortech.2004.06.025.
[98]A.K.Chandel, R.K.Kapoor, A.Singh, R.C.Kuhad, Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501, Bioresour. Technol. 98 (2007) 1947–1950. https://doi.org/10.1016/j.biortech.2006.07.047.
[99]K.Kirimura, T.Watanabe, T.Sunagawa, S.Usami, Citric Acid Production from Xylan and Xylan Hydrolysate by Semi-Solid Culture of Aspergillus niger, Biosci. Biotechnol. Biochem. 63 (1999) 226–228. https://doi.org/10.1271/bbb.63.226.
[100]M.S.Ou, L.O.Ingram, K.T.Shanmugam, L(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans, J. Ind. Microbiol. Biotechnol. 38 (2011) 599–605. https://doi.org/10.1007/s10295-010-0796-4.
[101]Seoung-Chul and Yun-Joong Kwon, Optimization of Pretreatment of Rice Straw Hemicellulosic Hydrolyzates for Microbial Production of Xylitol, (n.d.).
[102]J.N.Nigam, Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis, J. Biotechnol. 87 (2001) 17–27. https://doi.org/10.1016/S0168-1656(00)00385-0.
[103]G.Cao, N.Ren, A.Wang, D.J.Lee, W.Guo, B.Liu, Y.Feng, Q.Zhao, Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16, Int. J. Hydrogen Energy. 34 (2009) 7182–7188. https://doi.org/10.1016/j.ijhydene.2009.07.009.
[104]R.O.Moutta, A.K.Chandel, R.C.L.B.Rodrigues, M.B.Silva, G.J.M.Rocha, S.S.Silva, Statistical Optimization of Sugarcane Leaves Hydrolysis into Simple Sugars by Dilute Sulfuric Acid Catalyzed Process, Sugar Tech. 14 (2012) 53–60. https://doi.org/10.1007/s12355-011-0116-y.
[105]R.Aguilar, J.A.Ram, Kinetic study of the acid hydrolysis of sugar cane bagasse, 55 (2002) 309–318.
[106]N.Sritrakul, S.Nitisinprasert, Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith, Agric. Nat. Resour. 51 (2018) 512–519. https://doi.org/10.1016/j.anres.2017.12.006.
[107]K.J.Dussán, D.D.V.Silva, E.J.C.Moraes, P.V.Arruda, M.G.A.Felipe, Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse, Chem. Eng. Trans. 38 (2014) 433–438. https://doi.org/10.3303/CET1438073.
[108]E.Lam, J.H.T.Luong, Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals, ACS Catal. 4 (2014) 3393–3410. https://doi.org/10.1021/cs5008393.
[109]Y.Xiao, J.M.Hill, Solid acid catalysts produced by sulfonation of petroleum coke: Dominant role of aromatic hydrogen, Chemosphere. 248 (2020) 125981. https://doi.org/10.1016/j.chemosphere.2020.125981.
[110]X.Tang, S.Niu, S.Zhao, X.Zhang, X.Li, H.Yu, C.Lu, K.Han, Synthesis of sulfonated catalyst from bituminous coal to catalyze esterification for biodiesel production with promoted mechanism analysis, J. Ind. Eng. Chem. 77 (2019) 432–440. https://doi.org/10.1016/j.jiec.2019.05.008.
[111]W.Y.Lou, M.H.Zong, Z.Q.Duan, Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts, Bioresour. Technol. 99 (2008) 8752–8758. https://doi.org/10.1016/j.biortech.2008.04.038.
[112]M.H.Zong, Z.Q.Duan, W.Y.Lou, T.J.Smith, H.Wu, Preparation of a sugar catalyst and its use for highly efficient production of biodiesel, Green Chem. 9 (2007) 434–43. https://doi.org/10.1039/b615447f.
[113]T.Okuhara, Water-tolerant solid acid catalysts, Chem. Rev. 102 (2002) 3641–3666. https://doi.org/10.1021/cr0103569.
[114]F.L.Pua, Z.Fang, S.Zakaria, F.Guo, C.H.Chia, Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin, Biotechnol. Biofuels. 4 (2011) 2–9. https://doi.org/10.1186/1754-6834-4-56.
[115]M.H.Nazir, M.Ayoub, I.Zahid, R.BinShamsuddin, S.Yusup, M.Ameen, Zulqarnain, M.U.Qadeer, Development of lignin based heterogeneous solid acid catalyst derived from sugarcane bagasse for microwave assisted-transesterification of waste cooking oil, Biomass and Bioenergy. 146 (2021) 105978. https://doi.org/10.1016/j.biombioe.2021.105978.
[116]F.Guo, Z.L.Xiu, Z.X.Liang, Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst, Appl. Energy. 98 (2012) 47–52. https://doi.org/10.1016/j.apenergy.2012.02.071.
[117]J.T.Yu, A.M.Dehkhoda, N.Ellis, Development of biochar-based catalyst for transesterification of canola oil, Energy and Fuels. 25 (2011) 337–344. https://doi.org/10.1021/ef100977d.
[118]K.Ngaosuwan, J.G.Goodwin, P.Prasertdham, A green sulfonated carbon-based catalyst derived from coffee residue for esterification, Renew. Energy. 86 (2016) 262–269. https://doi.org/10.1016/j.renene.2015.08.010.
[119]H.Xiong, H.N.Pham, A.K.Datye, Hydrothermally stable heterogeneous catalysts for conversion of biorenewables, Green Chem. 16 (2014) 4627–4643. https://doi.org/10.1039/c4gc01152j.
[120]A.M.Dehkhoda, A.H.West, N.Ellis, Biochar based solid acid catalyst for biodiesel production, Appl. Catal. A Gen. 382 (2010) 197–204. https://doi.org/10.1016/j.apcata.2010.04.051.
[121]T.Liu, Z.Li, W.Li, C.Shi, Y.Wang, Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol, Bioresour. Technol. 133 (2013) 618–621. https://doi.org/10.1016/j.biortech.2013.01.163.
[122]A.Endut, S.H.Y.S.Abdullah, N.H.M.Hanapi, S.H.A.Hamid, F.Lananan, M.K.A.Kamarudin, R.Umar, H.Juahir, H.Khatoon, Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology, Int. Biodeterior. Biodegrad. 124 (2017) 250–257. https://doi.org/10.1016/j.ibiod.2017.06.008.
[123]L.Gan, J.Zhu, L.Lv, Cellulose hydrolysis catalyzed by highly acidic lignin- derived carbonaceous catalyst synthesized via hydrothermal carbonization, (2017). https://doi.org/10.1007/s10570-017-1515-3.
[124]Q.Shu, J.Gao, Z.Nawaz, Y.Liao, D.Wang, J.Wang, Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst, Appl. Energy. 87 (2010) 2589–2596. https://doi.org/10.1016/j.apenergy.2010.03.024.
[125]M.Tao, H.Guan, X.Wang, Y.Liu, R.Louh, Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esteri fi cation, Fuel Process. Technol. 138 (2015) 355–360. https://doi.org/10.1016/j.fuproc.2015.06.021.
[126]X.Xiong, I.K.M.Yu, S.S.Chen, D.C.W.Tsang, L.Cao, H.Song, E.E.Kwon, Y.Sik, S.Zhang, C.Sun, Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration, Catal. Today. 314 (2018) 52–61. https://doi.org/10.1016/j.cattod.2018.02.034.
[127]B.Zhang, J.Ren, X.Liu, Y.Guo, Y.Guo, G.Lu, Y.Wang, Novel sulfonated carbonaceous materials from p -toluenesulfonic acid / glucose as a high-performance solid-acid catalyst HO HO OH, Catal. Commun. 11 (2010) 629–632. https://doi.org/10.1016/j.catcom.2010.01.010.
[128]X.Liu, L.Zhang, W.Sun, acid from distillers ’ grain for esterification, Res. Chem. Intermed. 43 (2017) 5917–5932. https://doi.org/10.1007/s11164-017-2971-y.
[129]F.Guo, Z.Xiu, Z.Liang, Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst, Appl. Energy. 98 (2012) 47–52. https://doi.org/10.1016/j.apenergy.2012.02.071.
[130]Y.Shang, Y.Jiang, J.Gao, Energy Sources , Part A : Recovery , Utilization , and Environmental Effects One-step Synthesis of Peanut Shell- derived Solid Acid for Biodiesel Production, (n.d.) 37–41. https://doi.org/10.1080/15567036.2011.603026.
[131]S.I.Akinfalabi, U.Rashid, C.Ngamcharussrivichai, I.A.Nehdi, Synthesis of reusable biobased nano-catalyst from waste sugarcane bagasse for biodiesel production, Environ. Technol. Innov. 18 (2020) 100788. https://doi.org/10.1016/j.eti.2020.100788.
[132]F.Ezebor, M.Khairuddean, A.Z.Abdullah, P.L.Boey, Esterification of oily-FFA and transesterification of high FFA waste oils using novel palm trunk and bagasse-derived catalysts, Energy Convers. Manag. 88 (2014) 1143–1150. https://doi.org/10.1016/j.enconman.2014.04.062.
[133]F.Ezebor, M.Khairuddean, A.Z.Abdullah, P.L.Boey, Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol, Bioresour. Technol. 157 (2014) 254–262. https://doi.org/10.1016/j.biortech.2014.01.110.
[134]M.H.Nazir, M.Ayoub, I.Zahid, R.BinShamsuddin, S.Yusup, M.Ameen, Zulqarnain, M.U.Qadeer, Development of lignin based heterogeneous solid acid catalyst derived from sugarcane bagasse for microwave assisted-transesterification of waste cooking oil, Biomass and Bioenergy. 146 (2021) 105978. https://doi.org/10.1016/j.biombioe.2021.105978.
[135]A.Hidayat, B.Sutrisno, Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst, AIP Conf. Proc. 1803 (2017). https://doi.org/10.1063/1.4973173.
[136]L.H.Wang, H.Liu, L.Li, Carbon-based acid catalyst from waste seed shells: Preparation and characterization, Polish J. Chem. Technol. 17 (2015) 37–41. https://doi.org/10.1515/pjct-2015-0066.
[137]Y.Zhou, S.Niu, J.Li, Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol, Energy Convers. Manag. 114 (2016) 188–196. https://doi.org/10.1016/j.enconman.2016.02.027.
[138]A.Sluiter, B.Hames, R.Ruiz, C.Scarlata, J.Sluiter, D.Templeton, D.Crocker, NREL/TP-510-42618 analytical procedure - Determination of structural carbohydrates and lignin in Biomass, Lab. Anal. Proced. (2012) 17. http://www.nrel.gov/docs/gen/fy13/42618.pdf.
[139] G.L.Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Anal. Chem. 31 (1959) 426–428. https://doi.org/10.1021/ac60147a030.
[140]Y.A.Tsigie, C.H.Wu, L.H.Huynh, S.Ismadji, Y.H.Ju, Bioethanol production from Yarrowia lipolytica Po1g biomass, Bioresour. Technol. 145 (2013) 210–216. https://doi.org/10.1016/j.biortech.2012.11.091.
[141]H.Heywood, Particle size analysis, Nature. 159 (1947) 717–718. https://doi.org/10.1038/159717a0.
[142]M.Kitano, K.Arai, A.Kodama, T.Kousaka, K.Nakajima, S.Hayashi, M.Hara, Preparation of a sulfonated porous carbon catalyst with high specific surface area, Catal. Letters. 131 (2009) 242–249. https://doi.org/10.1007/s10562-009-0062-4.
[143]M.L.Granados, M.D.Z.Poves, D.M.Alonso, R.Mariscal, F.C.Galisteo, R.Moreno-Tost, J.Santamaría, J.L.G.Fierro, Biodiesel from sunflower oil by using activated calcium oxide, Appl. Catal. B Environ. 73 (2007) 317–326. https://doi.org/10.1016/j.apcatb.2006.12.017.
[144]Z.Fu, H.Wan, X.Hu, Q.Cui, G.Guan, Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area, React. Kinet. Mech. Catal. 107 (2012) 203–213. https://doi.org/10.1007/s11144-012-0466-9.
[145]Y.Wu, Z.Fu, D.Yin, Q.Xu, F.Liu, C.Lu, L.Mao, Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids, Green Chem. 12 (2010) 696–70. https://doi.org/10.1039/b917807d.
[146]P.Vounatsos, K.Atsonios, M.Agraniotis, K.Panopoulos, P.Grammelis, Report on RDF / SRF gasification properties, Life. (2013) 1–40. http://www.energywaste.gr/pdf/D4.1 - Report on RDF-SRF gasification properties .pdf.
[147]L.A.R.Batalha, Q.Han, H.Jameel, H. minChang, J.L.Colodette, F.J.Borges Gomes, Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining, Bioresour. Technol. 180 (2015) 97–105. https://doi.org/10.1016/j.biortech.2014.12.060.
[148]C.Carrasco, H.M.Baudel, J.Sendelius, T.Modig, C.Roslander, M.Galbe, B.Hahn-Hägerdal, G.Zacchi, G.Lidén, SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse, Enzyme Microb. Technol. 46 (2010) 64–73. https://doi.org/10.1016/j.enzmictec.2009.10.016.
[149]L.W.Yoon, T.N.Ang, G.C.Ngoh, A.S.M.Chua, Regression analysis on ionic liquid pretreatment of sugarcane bagasse and assessment of structural changes, Biomass and Bioenergy. 36 (2012) 160–169. https://doi.org/10.1016/j.biombioe.2011.10.033.
[150]Y.H.Leang, H.Y.Saw, Proximate and functional properties of sugarcane bagasse, Agro Food Ind. Hitech. 22 (2011) 5–8.
[151]D.Szczerbowski, A.P.Pitarelo, A.Zandoná Filho, L.P.Ramos, Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw, Carbohydr. Polym. 114 (2014) 95–101. https://doi.org/10.1016/j.carbpol.2014.07.052.
[152]A.Samariha, A.Khakifirooz, Application of NSSC pulping to sugarcane bagasse, BioResources. 6 (2011) 3313–3323. https://doi.org/10.15376/biores.6.3.3313-3323.
[153]I.Amores, I.Ballesteros, P.Manzanares, F.Sáez, G.Michelena, M.Ballesteros, Ethanol Production from Sugarcane Bagasse Pretreated by Steam Explosion, Electron. J. Energy Environ. 1 (2013) 25–36. https://doi.org/10.7770/ejee-v1n1-art519.
[154]T.Submitted, M.Sciences, PRODUCTION OF LEVULINIC ACID FROM SUGARCANE BAGASSE Thesis Submitted in fulfilment of the academic requirements for the MASTERS IN APPLIED SCIENCES ( CHEMISTRY ) By Lethiwe Debra Mthembu Faculty of Applied Sciences Department of Chemistry Durban Universit, (2015).
[155]D.R.Osuna-Laveaga, O.García-Depraect, R.Vallejo-Rodríguez, A.López-López, E.León-Becerril, Integrated ozonation-enzymatic hydrolysis pretreatment of sugarcane bagasse: Enhancement of sugars released to expended ozone ratio, Processes. 8 (2020) 1–18. https://doi.org/10.3390/pr8101274.
[156]P.F.Vena, M.P.García-Aparicio, M.Brienzo, J.F.Görgens, T.Rypstra, Impact of hemicelluloses pre-extraction on pulp properties of sugarcane bagasse, Cellul. Chem. Technol. 47 (2013) 469–477.
[157]W.Jonglertjunya, W.Makkhanon, T.Siwanta, P.Prayoonyong, Dilute acid hydrolysis of sugarcane bagasse for butanol fermentation, Chiang Mai J. Sci. 41 (2014) 60–70.
[158]G.Jackson de Moraes Rocha, C.Martin, I.B.Soares, A.M.Souto Maior, H.M.Baudel, C.A.Moraes de Abreu, Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production, Biomass and Bioenergy. 35 (2011) 663–670. https://doi.org/10.1016/j.biombioe.2010.10.018.
[159]R.Timung, N.N.Deshavath, V.VGoud, V.VDasu, Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass, 2016 (2016).
[160]H.Ran, J.Zhang, Q.Gao, Z.Lin, J.Bao, Analysis of biodegradation performance of furfural and 5- hydroxymethylfurfural by Amorphotheca resinae ZN1, Biotechnol. Biofuels. 7 (2014) 1–12. https://doi.org/10.1186/1754-6834-7-51.
[161]B.Z.Tizazu, V.S.Moholkar, Kinetic and thermodynamic analysis of dilute acid hydrolysis of sugarcane bagasse, Bioresour. Technol. 250 (2018) 197–203. https://doi.org/10.1016/j.biortech.2017.11.032.
[162]N.Sweygers, N.Alewaters, R.Dewil, L.Appels, Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural, Sci. Rep. 8 (2018) 1–11. https://doi.org/10.1038/s41598-018-26107-y.
[163]S.Larsson, E.Palmqvist, K.Stenberg, G.Zacchi, N.Nilvebrant, The generation of fermentation inhibitors during dilute acid hydrolysis of softwood, 0229 (1999) 151–159.
[164]T.Tongtummachat, N.Akkarawatkhoosith, A.Kaewchada, A.Jaree, Conversion of Glucose to 5-Hydroxymethylfurfural in a Microreactor, Front. Chem. 7 (2020) 1–9. https://doi.org/10.3389/fchem.2019.00951.
[165]S.X.Chin, C.H.Chia, Z.Fang, S.Zakaria, X.K.Li, F.Zhang, A kinetic study on acid hydrolysis of oil palm empty fruit bunch fibers using a microwave reactor system, Energy and Fuels. 28 (2014) 2589–2597. https://doi.org/10.1021/ef402468z.
[166]G.J.Vargas Betancur, N.Pereira, Sugar cane bagasse as feedstock for second generation ethanol production. Part I: Diluted acid pretreatment optimization, Electron. J. Biotechnol. 13 (2010) 1–9. https://doi.org/10.2225/vol13-issue3-fulltext-3.
[167]N.N.Deshavath, M.Mohan, V.D.Veeranki, V.V.Goud, S.R.Pinnamaneni, T.Benarjee, Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production, 3 Biotech. 7 (2017) 1–12. https://doi.org/10.1007/s13205-017-0752-3.
[168]A.Singh, P.Sharma, A.K.Saran, N.Singh, N.R.Bishnoi, Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices, Renew. Energy. 50 (2013) 488–493. https://doi.org/10.1016/j.renene.2012.07.003.
[169]H.Li, N.J.Kim, M.Jiang, J.W.Kang, H.N.Chang, Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production, Bioresour. Technol. 100 (2009) 3245–3251. https://doi.org/10.1016/j.biortech.2009.01.021.
[170]Y.H.Chang, K.S.Chang, C.Y.Chen, C.L.Hsu, T.C.Chang, H.DerJang, Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration, Fermentation. 4 (2018). https://doi.org/10.3390/fermentation4020045.
[171]X.Yang, J.H.Lee, H.Y.Yoo, H.Y.Shin, L.P.Thapa, C.Park, S.W.Kim, Production of bioethanol and biodiesel using instant noodle waste, Bioprocess Biosyst. Eng. 37 (2014) 1627–1635. https://doi.org/10.1007/s00449-014-1135-3.
[172]S.K.D.Park, S.Hee, Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae, (2013) 659–666. https://doi.org/10.1007/s00449-013-0888-4.
[173]M.Cuevas, M.Saleh, J.F.García-Martín, S.Sánchez, Influence of solid loading on D-xylose production through dilute sulphuric acid hydrolysis of olive stones, Grasas y Aceites. 66 (2015). https://doi.org/10.3989/gya.0838142.
[174]Peter Larkin, Infrared and Raman Spectroscopy Principles and Spectral Interpretation -Elsevier, 2011.
[175]A.Jadhav, I.Ahmed, A.G.Baloch, H.Jadhav, S.Nizamuddin, M.T.H.Siddiqui, H.A.Baloch, S.S.Qureshi, N.M.Mubarak, Utilization of oil palm fronds for bio-oil and bio-char production using hydrothermal liquefaction technology, Biomass Convers. Biorefinery. (2019). https://doi.org/10.1007/s13399-019-00517-y.

無法下載圖示 全文公開日期 2024/07/16 (校內網路)
全文公開日期 2024/07/16 (校外網路)
全文公開日期 2024/07/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE