簡易檢索 / 詳目顯示

研究生: 金晨
Chen Jin
論文名稱: 高占比再生能源下因應慣性補償之儲能容量評估
Capacity Evaluation of Energy Storage System for Grid Inertia Compensation under High Renewable Energy Penetration
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
陳鴻誠
Hung-Cheng Chen
楊念哲
Nien-Che Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: 再生能源電力系統慣性儲能系統頻率控制
外文關鍵詞: energy storage system, renewable energy, power system inertia, frequency control
相關次數: 點閱:387下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著越來越多的再生能源發電技術、交直流微電網技術、高壓直流輸電技術、智慧電網等新興科技納入到電網中,傳統電網的電氣特性將會發生重大改變。臺灣本島預計在2025年再生能源發電機組發電量占比將達到20%,包括20多GW的太陽能光電廠和7GW左右的離岸風電場,這些電力電子的發電機組將取代部分傳統機械式發電機組,而後者是電力系統慣性的主要提供者。傳統發電機組被再生能源發電機組代替後將導致未來的電力系統在發生電力波動時更容易引發停電事故,因為電力系統慣性降低使得系統頻率波動變大,使其更早更快的觸發低頻保護電驛。
為提高上述電力系統的可靠性,各國研究部門提出許多措施與方法,其中以電化學電池為首的儲能系統因其具備快速響應、製造與部署快速、體積較小、較為環保等優點成為補償電力系統慣性,提高其可靠性之較優選擇。本研究首先分析不同占比的再生能源併入電力系統造成的不同影響;再根據負載頻率控制系統(Load Frequency Control,LFC)模型推導出一套估算儲能系統容量的方法,並通過Matlab之Simulink對該方法的在不同的系統慣性、故障量、傳統發電機組分配比、儲能系統響應速度等特性下進行模擬,探討不同情況下該方法估算的精度;最後使用PSS/E(Power System Simulator for Engineering)模擬2025年某大型孤島式電力系統中再生能源與傳統發電機組發電分配比的不同對電力系統之影響,以及分析加入估算的儲能系統後之改善程度與預期效果之精度。


Recently, lots of renewable technologies are used in the power grid, the electrical characteristics of traditional power grid will be changed. Taiwan's main island will be expected to 20% of renewable energy in 2025, including more than 20 GW of solar photovoltaic power and 7 GW of offshore wind farms. These power electronics generators will replace some traditional mechanical generators which support the inertia in the power system. The power system of low inertia will make the frequency lower when some large faults of power system happen. This will result in the low frequency protection relay tripping and the power system outage that should not have occurred.
In order to improve the reliability of the power system, many research institutes have proposed many measures and methods. Among them, the energy storage system becomes an excellent choice to support the inertia and improve the reliability because of its rapid response, rapid manufacturing and deployment, small size and environmentally friendly products. This thesis first analyzes the different effects of different proportions of renewable energy into the power system. And then, the new method will be set to estimate the capacity of the energy storage system based on the load frequency control(LFC) model and simulated under different characteristics of inertia, degree of fault, traditional generator distribution ratio and energy storage system response speed by the Simulink of Matlab. According to the results, the accuracy of the method under different conditions is compared. Finally, using PSS/E(Power System Simulator for Engineering) to simulate the impact of different distribution ratios of renewable energy and traditional generators in the power system of island in 2025, and analyze the degree of improvement in the stability of the power system by adding the estimated energy storage system.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 2.1. 研究背景及動機 1 2.2. 文獻回顧 2 2.3. 研究方法 4 2.4. 章節概要 5 第二章 傳統發電機自動頻率控制簡介 6 3.1. 負載頻率控制(LFC) 6 3.2. 發電機控制系統模型 6 3.3. 負載模型 7 3.4. 原動機模型 8 3.5. 調速機模型 8 第三章 BESS容量於系統慣性補償理論 12 4.1. 系統頻率變化率(ROCOF) 12 4.2. BESS慣性補償模型 16 第四章 基於Matlab之負載頻率控制系統分析 21 5.1. 頻率控制系統模型介紹 21 5.2. Matlab之電力系統暫態穩定度分析 24 5.2.1. MCASE1 25 5.2.2. MCASE2 26 5.2.3. MCASE3 27 5.2.4. MCASE4 34 5.2.5. MCASE5 36 第五章 某大型孤島式電力系統分析 40 6.1. PSS/E系統介紹 40 6.1.1. PSS/E之PV模型介紹 41 6.1.2. PSS/E之BESS模型介紹 48 6.2. 臺灣電力系統簡介 57 6.3. PSS/E暫態穩定度分析 62 6.3.1. PCASE1 63 6.3.2. PCASE2 68 6.3.3. PCASE3 70 6.3.4. PCASE4 79 6.3.5. PCASE5 81 第六章 結論及未來展望 84 7.1. 結論 84 7.2. 未來展望 86 參考文獻 87

[1] C. Chen, T. Park, X. Wang, S. Piao, “China and India lead in greening of the world through land-use management”, Nature Sustainability, vol. 2, pp.122-129, 2019.
[2] “Scenario Outlook And Adequacy Forecast 2014–2030”, European Network of Transmission System Operators for Electricity (ENTSO-E), Tech., Rep., 2014.
[3] “International Renewable Energy Agency (IRENA)”, Technology Roadmap. 2014
[4] Y. Dai, Y. Xu, Z. Y. Dong, K. P. Wong, and L. Zhuang, “Real-time prediction of event-driven load shedding for frequency stability enhancement of power systems”, IET Gen. Transm. Distrib., vol. 6, no. 9, pp. 914-921, 2012.
[5] J. O’ Sullivan, A. Rogers, D. Flynn, P. Smith, A. Mullane, and M. O’ Malley, “Studying the maximum instantaneous non-synchronous generation in an island system—frequency stability challenges in ireland,” IEEE Trans. Power Syst., vol. 29, no. 6, pp.2943-2951, 2014.
[6] Bevrani, H., Ghosh, A., Ledwich, G. “Renewable energy sources and frequency regulation: survey and new perspectives”, IET Renew. Power Gener., pp. 438–457. 2009.
[7] P. Tielens and D. V. Hertem, “Grid inertia and frequency control in power systems with high penetration of renewables,” in Proc. Young Researchers Symp. Elect. Power Eng., Delft, The Netherlands, vol. 6, 2012.
[8] R. Hollinger, L.M. Diazgranados, and T. Erge, “Trends in the German PCR market: perspectives for battery systems”. 12th IEEE International Conference on the European Energy Market, 2015.
[9] A. Oudalov, D. Chartouni, and C. Ohler, “Optimizing a battery energy storage system for primary frequency control”, Power Systems, IEEE Transactions on, vol. 22, no. 3, pp. 1259–1266, 2007.
[10] A. Ulbig, M. Galus, S. Chatzivasileiadis, and G. Andersson, “General frequency control with aggregated control reserve capacity from timevarying sources: The case of PHEVs,” in Bulk Power System Dynamics and Control - VIII (IREP), 2010 IREP Symposium, Buzios, RJ, Brazil, August 2010.
[11] K. Divya and J. Østergaard, “Battery energy storage technology for power systems - an overview,” Electric Power Systems Research, vol. 79, no. 4, pp. 511-520, 2009.
[12] F. Diaz-Gonzalez, F. Bianchi, A. Sumper, and O. Gomis-Bellmunt, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, 2014.
[13] S. Teleke, M. Baran, S. Bhattacharya, and A. Huang, “Rule-based control of battery energy storage for dispatching intermittent renewable sources,” IEEE Trans. Sustain. Energy, vol. 1, no. 3, pp. 117-124, 2010.
[14] X. Li, D. Hui, and X. Lai, “Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations,” IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 464–473, Apr. 2013.
[15] X. Feng, H. B. Gooi, and S. X. Chen, “Hybrid energy storage with multimode fuzzy power allocator for PV systems,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 389–397, Apr. 2014.
[16] D. Melo, G. H. Beng, and T. Massier, “Charging of electric vehicles and demand response management in a Singaporean car park,” in Proc. 49th Int. Univ. Power Eng. Conf. (UPEC), Cluj-Napoca, Romania, Sep., pp. 1–6, 2014.
[17] M. Swierczynski, D. I. Stroe, A. I. Stan, R. Teodorescu, and D. U. Sauer, “Selection and performance-degradation modeling of LiMO2/Li4Ti5O12 and LiFePO4/C battery cells as suitable energy storage systems for grid integration with wind power plants: An example for the primary frequency regulation service,” IEEE Trans. Sustain. Energy, vol. 5, no. 1, pp. 90–101, 2014.
[18] UCTE: ‘Technical paper – definition of a set of requirements to generating units” Union for the Coordination of the Transmission of Electricity (UCTE), Online: http://www.ucte.org, 2008
[19] 臺灣電力公司,[電力系統運轉操作章則彙編].
[20] J. Eto, J. Undrill, P. Mackin, R. Daschmans, B. Williams, B. Haney, R. Hunt, J. Ellis, H. Illian, C. Martinez, M. O´Malley, K. Coughlin, and K. Hamachi-LaCommare, “Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation”, 2010.
[21] “RoCoF an independent analysis on the ability of Generators to ride through Rate of Change of Frequency values up to 2Hz/s”, DNV KEMA Energy & Sustainability, no. 4478894, pp. 1–40, 2013.
[22] S. Chen, T. Zhang, H.B. Gooi, R. Masiello, and W. Katzenstein, “Penetration rate and effectiveness studies of aggregated BESS for frequency regulation”. IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 167-177, 2016.
[23] P. Tielens and D. V. Hertem, “Grid inertia and frequency control in power systems with high penetration of renewables,” in Proc. Young Researchers Symp. Elect. Power Eng., Delft, The Netherlands, vol. 6., Apr. 2012.
[24] P. W. Christensen and G. C. Tarnowski, “Inertia for wind power plants—State of the art review—Year 2011,” in Proc. 10th Int. Workshop Large-Scale Integration of Wind Power Into Power Systems, Aarhus, Denmark, Oct. 2011.
[25] L. Vargas et al., “Wind power curtailment and energy storage in transmission congestion management considering power plants ramp rates,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2498–2506, Sep. 2015
[26] M. Bollen and F. Hassan, “Integration of distributed generation in the power system”, Vol.80. John wiley & sons, 2011.
[27] F. Gonzalez-Longatt, M. Francisco., and S. M. Alhejaj. “Enabling inertial response in utility-scale battery energy storage system.” IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Melbourne, Australia, 2016.
[28] F. Gonzalez-Longatt, S. Alhejaj, A. Bonfiglio, R. Procopio, and J.L. Rueda. “Inertial frequency response provided by battery energy storage systems: Probabilistic assessment,”6th International Conference on Clean Electrical Power (ICCEP), pp. 403-409, June 2017.
[29] Shayeghi, H., Shayanfar, H.A., Jalili, A.: “Load frequency control strategies: a state-of-the-art survey for the researcher” Energy Convers. Manage., 50, (2), pp. 344-353, 2009.
[30] Serban, I., Marinescu, C. “Aggregate load-frequency control of a wind-hydro autonomous microgrid”, Renew. Energy, 36, (12), pp. 3345-3354, 2011.
[31] Senjyu, T., Nakaji, T., Uezato, K., Funabashi, T. “A hybrid power system using alternative energy facilities in isolated Island”, IEEE Trans. Energy Convers., pp. 406-414, 2005.
[32] S. Canevese ; D. Cirio ; A. Gatti ; M. Rapizza ; E. Micolano ; L. Pellegrino, “Simulation of enhanced frequency response by battery storage systems: The UK versus the continental europe system” IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems, PP. 1-6,2017.
[33] NGET, Enhanced frequency response. Invitation to tender for prequalified parties. Version 2.2, 8 July 2016.
[34] Alexander Cooke ; Dani Strickland ; Kane Forkasiewicz “Energy storage for enhanced frequency response services”, 52nd International Universities Power Engineering Conference (UPEC), PP.1-6, 2017.
[35] Hua Ye ; Yanan Tang ; Yao Liu ; Zekun Li ; Zhiping Qi “Transient Frequency Response Model-Based Energy Storage Optimum Size in Power Systems”, IEEE International Conference on Energy Internet (ICEI), PP.65-71, 2017.
[36] Lucian Toma ; Mihai Sanduleac ; Stefan Andrei Baltac ; Francesco Arrigo ; “On the virtual inertia provision by BESS in low inertia power systems”, IEEE International Energy Conference (ENERGYCON), Pages: 1-6, 2018.
[37] 亞思科技,PSS/E 電力系統模擬軟體產品概述網頁。網址:http://www.astek-tw.com/product/psse/ (May 7,2019)
[38] 臺灣電力公司網頁。檢自http://www.taipower.com.tw/(June 3,2018)

無法下載圖示 全文公開日期 2025/01/03 (校內網路)
全文公開日期 2030/01/03 (校外網路)
全文公開日期 2030/01/03 (國家圖書館:臺灣博碩士論文系統)
QR CODE