簡易檢索 / 詳目顯示

研究生: Tuan-Khanh Nguyen
Tuan-Khanh Nguyen
論文名稱: 新型微波溼度和微流體感測器研製
Development of Novel Microwave Humidity and Microfluidic Sensors
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 曾昭雄
Chao-Hsiung Tseng
林丁丙
Ding-Bing Lin
王蒼容
Chun-Long Wang
謝松年
Sung-Nien Hsieh
陳士元
Shih-Yuan Chen
黃建彰
Chien-Chang Huang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 83
中文關鍵詞: 微波濕度測器微波流體感測器基板合成波導振盪器微流體濾波器液體介電量測
外文關鍵詞: Microwave humidity sensor, microwave microfluidic sensor, substrate integrated waveguide (SIW) sensor, filter-based microfluidic sensor, liquid permittivity measurement
相關次數: 點閱:246下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出適用於物聯網應用的新型微波濕度感測器及微波微流體感測器,其具有高靈敏度及輕巧化等優點,該特性將透過實作與量測進行驗證。本論文提出的兩種新型微波感測器在量測驗證上不需要使用笨重且昂貴之網路分析儀(vector network analyzer, VNA),此部分將在論文中進行說明。

    微波濕度感測器由基板合成波導(substrate integrated waveguide, SIW)振盪器及頻率解調器所組成,透過在基板合成波導共振腔嵌入穿透氣孔,使得電場可分佈於氣孔中及近場區域,以偵測感測器週邊的環境溼度。本論文所提出的濕度感測器操作頻率在7.67 GHz,量測結果顯示有效濕度感測範圍涵蓋50%到90%的環境相對濕度,其濕度檢測靈敏度高達165 kHz/RH。

    微波微流體感測器由射頻信號源、功率分配器、增益/相位檢測器(gain/phase detector, GPD)及濾波器所組成,在濾波感測器結構上採用能集中感測電場指叉電極的耦合結構,以改善微波微流體感測器的靈敏度。此微流體感測器操作在1.53GHz,在進行量測驗證時,以8 µL水-乙醇混合物,注入毛細管中作為待測液體(liquids under test, LUT)進行驗證。量測結果顯示,在微量流體下仍具有高靈敏度。相較於商用介電係數探頭,且當LUT的ε_r^'範圍從26變化到72時,其ε_r^' 與 ε_r^''的最大量測誤差分別為-3.29%、14%。


    In this dissertation, new microwave humidity and microfluidic sensors are proposed, fabricated, and measured with sensitivity improvement and compactness for IoT applications. Both of these two measurement systems eliminate the need for a bulky and costly vector network analyzer (VNA).
    The humidity sensor is designed at 7.67 GHz and consists of a substrate integrated waveguide (SIW) oscillator and a frequency demodulator. The electric-field distribution at the embedded air holes of the SIW cavity is used to detect the humid air inside air holes and distributed in the surrounding area. The measurement results have demonstrated the efficient capability of humidity detection over a relative humidity (RH) range of 50% to 90%, while the sensitivity of this humidity sensor is 165 kHz/RH.
    The microfluidic sensor consisted of the RF source, power divider, gain/phase detector (GPD), and filter-based sensor. In addition, the sensitivity of the microfluidic sensor is also improved by concentrating the sensing field of the interdigitated electrode (IDE) coupling structure of the filter-based sensor. The design frequency of the microfluidic sensor is 1.53 GHz. The measurement capabilities of the filter-based sensor are exemplified by testing 8 µL water-ethanol mixtures in the capillary tube as the liquids under test (LUT). This small volume of LUT has shown higher sensitivity compared with other works, with maximum errors of ε_r^' and ε_r^'' are -3.29% and 14%, respectively, with a range of ε_r^' of LUT from 26 to 72.

    摘要 i Abstract ii Acknowledgment iii Table of Contents iv List of Figures vii List of Tables xi Chapter 1 1 Introduction 1 1.1. Literature Survey of Humidity Sensors 1 1.1.1 Capacitive humidity sensor 3 1.1.2 Resistive humidity sensor 3 1.1.3 Optical humidity sensor 4 1.1.4 Humidity sensor using SIW 5 1.1.5 Humidity sensor using SAW 6 1.2. Literature Survey of Microfluidic Sensors 6 1.2.1 Permittivity measurement using Coaxial Probe 8 1.2.2 Microfluidic sensor using coplanar waveguide (CPW) 9 1.2.3 Microfluidic sensor using split-ring resonator (SRR) 10 1.2.4 Microfluidic sensor using complementary SRR (CSRR) 10 1.2.5 Microfluidic sensor using SIW 11 1.2.6 Microfluidic sensor using coupled resonators 12 1.2.7 Active microfluidic sensor 13 1.3. Contributions 14 1.4. Chapter Outlines 16 Chapter 2 17 Novel Microwave Humidity Sensor 17 2.1 Introduction 17 2.2 Design of a Humidity Sensing Oscillator 18 2.2.1. SIW Cavity Design 18 2.2.2. Generator of Humid Air 22 2.2.3. Sensing Oscillator Design 23 2.2.4. Demodulator Implementation 28 2.3. Working Mechanism of Humidity Sensor 30 2.3.1 Mechanism of Sensing Oscillator 30 2.3.2 Mechanism of Demodulator 33 2.4 Measurement Results 34 2.5 Summary 36 Chapter 3 38 Novel Microwave Microfluidic Sensor 38 3.1 Introduction 38 3.2 Design of Filter-Based Microfluidic Sensor 39 3.2.1 Sensor Design 39 3.2.2 Sensing Mechanism 42 3.2.3 Permittivity Computation 47 3.3 Microfluidic Permittivity Measurement System 55 3.4 Summary 60 Chapter 4 61 Conclusions 61 4.1 Summary 61 4.2 Future work 62 References 63

    [1] A. Kapic et al., “Humidity sensors for high energy physics applications: A review,” IEEE Sensors J., vol. 20, no. 18, pp. 10335-10344, Sep. 2020.
    [2] G. R. Biswal et al., “Design and fabrication of an inexpensive capacitive humidity sensor for smart sub-station automation,” IEEE Sensors J., vol. 20, no. 12, pp. 6215-6223, Jun. 2020.
    [3] A. Tripathy et al., “Armalcolite nanocomposite: A new paradigm for flexible capacitive humidity sensor,” IEEE Sensors J., vol. 21, no. 13, pp. 14685-14692, Jul. 2021.
    [4] J. Boudaden et al., “Polyimide-based capacitive humidity sensor,” Sensors, vol. 18, no. 5, p. 1516, May 2018.
    [5] R. M. Morais et al., “Low cost humidity sensor based on pani/pedot:pss printed on paper,” IEEE Sensors J., vol. 18, no. 7, pp. 2647-2651, Apr. 2018.
    [6] X. Zhang et al., “Printed carbon nanotubes-based flexible resistive humidity sensor,” IEEE Sensors J., vol. 20, no. 21, pp. 12592-12601, Nov. 2020.
    [7] H. Lensch et al., “Impedance model for a high-temperature ceramic humidity sensor,” J. Sensors Sensor Syst., vol. 8, no. 1, pp. 161–169, Apr. 2019.
    [8] D. L. Presti et al., “Agar-coated fiber bragg grating sensor for relative humidity measurements: influence of coating thickness and polymer concentration,” IEEE Sensors J., vol. 19, no. 9, pp. 3335-3342, May 2019.
    [9] A. Vaz et al., “Optical fiber humidity sensor based on polyvinylidene fluoride fabry–perot,” IEEE Photon. Technol. Lett., vol. 31, no. 7, pp. 549-552, Apr. 2019.
    [10] Y. Wang et al., “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun., vol. 372, pp. 229–234, Aug. 2016.
    [11] H. E. Matbouly, N. Boubekeur and F. Domingue N, “Passive microwave substrate integrated cavity resonator for humidity sensing,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4150-4156, Dec. 2015.
    [12] T. R. Jones, M. H. Zarifi and M. Daneshmand, “Miniaturized quarter-mode substrate integrated cavity resonators for humidity sensing,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 7, pp. 612-614, Jul. 2017.
    [13] A. Benleulmi, N. Boubekeur and D. Massicotte, “A highly sensitive substrate integrated waveguide interferometer applied to humidity sensing,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 1, pp. 68-70, Jan. 2019.
    [14] C. Jia et al., “A novel differential capacitive humidity sensor on SIW re-entrant cavity microwave resonators with PEDOT:PSS film,” IEEE Sensors J., vol. 22, no. 7, pp. 6576-6585, Apr. 2022.
    [15] S. Alam, T. Islam and U. Mittal, “A sensitive inexpensive SAW sensor for wide range humidity measurement,” IEEE Sensors J., vol. 20, no. 1, pp. 546-551, Jan, 2020.
    [16] W. Wu, X. Xiang and X. Zu, "Porous cellulose acetate film-coated surface acoustic wave sensor for highly sensitive humidity sensing," IEEE Sensors J., vol. 22, no. 21, pp. 20216-20222, Nov. 2022.
    [17] T. Itoh, “A new method for measuring properties of dielectric materials using a microstrip cavity (short papers),” IEEE Trans. Microw. Theory Techn., vol. 22, no. 5, pp. 572–576, May 1974.
    [18] D. Shimin, “A new method for measuring dielectric constant using the resonant frequency of a patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 34, no. 9, pp. 923–931, Sep. 1986.
    [19] N. K. Das, S. M. Voda, and D. M. Pozar, “Two methods for the measurement of substrate dielectric constant,” IEEE Trans. Microw. Theory Techn., vol. 35, no. 7, pp. 636–642, Jul. 1987.
    [20] D. M. Pozar, Microwave Engineering, 3rd ed. New York, NY, USA:Wiley, 2005.
    [21] E. Benoit et al., “Applicability of dielectric measurements in the field of pharmaceutical formulation,” Bioelectrochem. Bioenerget., vol. 40, no. 2, p. 175–179, Feb. 1996.
    [22] J. C. Booth et al., “Broadband permittivity measurements of liquid and biological samples using microfluidic channels,” IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, USA, Jun. 2006, pp. 1750–1753.
    [23] M. Kent et al., “Determination of added water in pork products using microwave dielectric spectroscopy,” Food Control, vol. 13, no. 3, p. 143–149, Apr. 2002.
    [24] W. Wang et al., “Laser-induced surface acoustic wave sensing-based malaria parasite detection and analysis,” IEEE Trans. Instrum. Meas., vol. 71, Mar. 2022.
    [25] S. Liu et al., “Hybrid characterization of nanolitre dielectric fluids in a single microfluidic channel up to 110 GHz,” IEEE Trans. Microw. Theory Techn., vol. 65, pp. 5063–5073, Dec. 2017.
    [26] X. Ma et al., “A multistate single-connection calibration for microwave microfluidics,” IEEE Trans. Microw. Theory Techn., vol. 66, pp. 1099–1107, Feb. 2018.
    [27] W. Withayachumnankul et al., “Metamaterial-based microfluidic sensor for dielectric characterization,” Sens. Actuator A Phys., vol. 189, pp.233–237, Jan. 2013.
    [28] M. Navaei, P. Rezaei, and S. Kiani, “Microwave split ring resonator sensor for determination of the fluids permittivity with measurement of human milk samples,” Radio Science, vol. 57, no. 7, Jul. 2022.
    [29] J. Ma et al., “Complex permittivity characterization of liquid samples based on a split ring resonator (SRR),” Sensors, vol. 21, no. 10, May 2021.
    [30] X. Bao et al., “Integration of interdigitated electrodes in split-ring resonator for detecting liquid mixtures,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 6, pp. 2080–2089, Jun. 2020.
    [31] E. L. Chuma et al., “Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator,” IEEE Sensors J., vol. 18, no. 24, pp. 9978–9983, Dec. 2018.
    [32] A. Ebrahimi et al., “High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization,” IEEE Sensors J., vol. 14, no. 5, pp. 1345–1351, May 2014.
    [33] E. L. Chuma and Y. Iano, “Novelty sensor using integrated fluorescence and dielectric spectroscopy to improve food quality identification,” in Proc. IEEE SENSORS, Dallas, TX, USA, Nov. 2022.
    [34] E. L. Chuma and T. Rasmussen, “Metamaterial-based sensor integrating microwave dielectric and near-infrared spectroscopy techniques for substance evaluation,” IEEE Sensors J., vol. 22, no. 20, pp. 19308–19314, Oct. 2022.
    [35] A. Ebrahimi, J. Scott, and K. Ghorbani, “Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4269–4277, Oct. 2019.
    [36] H. Abdelwahab et al., “Extremely sensitive microwave microfluidic dielectric sensor using a transmission line loaded with shunt LC resonators,” Sensors, vol. 21, no. 20, pp. 6811–6823, Oct. 2021.
    [37] T. Chretiennot, D. Dubuc and K. Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 972–978, Feb. 2013.
    [38] G. M. Rocco et al., “3-D printed microfluidic sensor in siw technology for liquids’ characterization,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1175–1184, Mar. 2020.
    [39] B. G. Colpitts, “Temperature sensitivity of coaxial probe complex permittivity measurements: experimental approach,” IEEE Trans. Microw. Theory Techn., vol. 41, no. 2, pp. 229-233, Feb. 1993.
    [40] S. Hoshina, Y. Kanai and M. Miyakawa, “A numerical study on the measurement region of an open-ended coaxial probe used for complex permittivity measurement,” IEEE Trans. Magn., vol. 37, no. 5, pp. 3311-3314, Sep. 2001.
    [41] M. S. Boybay and O. M. Ramahi, “Open-ended coaxial line probes with negative permittivity materials,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1765-1769, May 2011.
    [42] Application notes: Basics of measuring the dielectric properties of materials, Keysight Technologies Inc., Santa Rosa, USA.
    [43] M. H. Zarifi and Daneshmand, “Wide dynamic range microwave planar coupled ring resonator for sensing applications,” Appl. Phys. Lett., vol. 108, no. 23, pp. 232906, Jun. 2016.
    [44] C. G. Juan et al., “Highly-sensitive glucose concentration sensor exploiting inter-resonators couplings,” in Proc. 49th European Microwave Conf., Paris, France, Nov. 2019, pp. 662-665.
    [45] L. -V. Herrera-Sepulveda et al., “Sensor and methodology for determining dielectric constant using electrically coupled resonators,” IEEE Microw. Wirel. Compon. Lett., vol. 29, no. 9, pp. 626-628, Sep. 2019.
    [46] A. A. Helmy and K. Entesari, “A 1-8 GHz miniaturized spectroscopy system for permittivity detection and mixture characterization of organic chemicals,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 5157-4170, Dec. 2012.
    [47] A. A. Helmy et al., “Complex permittivity detection of organic chemicals and mixtures using a 0.5-3 GHz miniaturized spectroscopy system,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4646-4658, Dec. 2013.
    [48] A. A. Helmy et al., “A self-sustained CMOS microwave chemical sensor using a frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2467-2483, Oct. 2012.
    [49] O. Elhadidy et al., “A CMOS fractional-N PLL-based microwave chemical sensor with 1.5% permittivity accuracy,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3402-3416, Sep. 2013.
    [50] C. -H. Tseng and C. -Y. Yang, “Novel microwave frequency-locked-loop-based sensor for complex permittivity measurement of liquid solutions,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 10, pp. 4556-4565, Oct. 2022.
    [51] T. -K. Nguyen and C. -H. Tseng, “A new microwave humidity sensor with near-field self-injection-locked technology,” IEEE Sensors J., vol. 21, no. 19, pp. 21520-21528, Oct. 2021.
    [52] T. -K. Nguyen and C. -H. Tseng, “New radio-frequency liquid permittivity measurement system using filter-based microfluidic sensor,” IEEE Sensors J., vol. 23, no. 12, pp. 12785-12795, Jun. 2023.
    [53] Y. Cassivi and K. Wu, “Low cost microwave oscillator using substrate integrated waveguide cavity,” IEEE Microw. Wireless Compon. Lett., vol. 13, no.2, pp. 48-50, Feb. 2003.
    [54] L.-C. Li, Y.-H. Tseng, and H.-Y. Lin, “Efficient photodecomposition of NOx on carbon modified Ag/TiO2 nanocomposites,” Topics in Catalysis, vol. 63, pp. 1251–1260, Mar. 2020.
    [55] C.-H. Tseng and C.-L. Chang, “Design of low phase-noise microwave oscillator and wideband VCO based on microstrip combline bandpass filters,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3151-3160, Oct. 2012.
    [56] H. Packard, “Phase noise characterization of microwave oscillatorsFrequency discriminator method,” Hewlett-Packard, Palo Alto, CA, USA, Tech. Rep. 11729C-2, Sep. 1985.
    [57] Y. Cassivi et al., “Dispersion characteristics of substrate integrated rectangular waveguide,” IEEE Microwave Wireless Compon. Lett., vol. 12, pp. 333–335, Sep. 2002.
    [58] C. -H. Tseng, T. -J. Tseng and C. -Z. Wu, “Cuffless blood pressure measurement using a microwave near-field self-injection-locked wrist pulse sensor,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4865-4874, Nov. 2020.
    [59] C.-H. Tseng and C.-Z. Wu, “A novel microwave phase- and perturbation-injection-locked sensor with self-oscillating complementary split-ring resonator for finger and wrist pulse detection,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1933-1942, May 2020.
    [60] R. Adler, “A study of locking phenomena in oscillators,” in Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946.
    [61] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
    [62] J.-S. Hong, “Microstrip Filters for RF/Microwave Applications,” Wiley, New York, NY, USA, 2011.
    [63] J.-S.Hong, “Couplings of asynchronously tuned coupled microwave resonators,” in Proc. IEE Microw., Antennas Propag., vol. 147, pp. 354–358, Oct. 2000.
    [64] B. Behzadnezhad et al., “Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils,” J. Magn. Reson., vol. 289, pp. 113–121, Feb. 2018.
    [65] N1501A Dielectric Probe Kit, 10 MHz to 50 GHz Technical overview, Keysight Technologies Inc., Santa Rosa, USA.
    [66] E5071C ENA Vector Network Analyzer datasheet, Keysight Technologies Inc., Santa Rosa, USA.

    QR CODE