簡易檢索 / 詳目顯示

研究生: 林政諺
Cheng-yen Lin
論文名稱: 二閥四行程機車引擎瞬間流場與歧管噴油特性的計算與實驗分析
Flow and Port Injection Characteristics of a Two-valve, Four-stoke, Motorcycle Engine:Computational and Experimental Analyses
指導教授: 黃榮芳
Rong-fung Huang
口試委員: 趙振綱
Ching-kong Chao
林怡均
Yi-jiun LIN
許清閔
Ching-min Hsu
陳佳堃
Jia-kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 335
中文關鍵詞: 缸內滾轉運動質點影像速度儀量測引擎計算模擬歧管噴油
外文關鍵詞: tumble motion, PIV, motorcycle engine, CFD, PFI
相關次數: 點閱:376下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用計算與實驗方法於一部歧管噴油的二閥單缸四行程250 c.c.引擎。在進氣與壓縮行程期間,使用計算流體動力學(Computational Fluid Dynamics, CFD)商用軟體STAR-CD,分析在未噴油時,缸內氣流滾轉(tumble)運動的衍化情形,並計算量化的滾轉比,用以評估滾轉強度是否恰當,同時探討轉速變化對於缸內滾轉(tumble)運動的影響;並在homogeneous charge模態下,計算歧管噴油時缸內的油滴粒徑與油氣濃度分佈。以油滴粒徑與油氣濃度分佈均勻度作為準則,找出較佳的噴油時機。實驗部分使用質點影像速度儀(particle image velocimeter, PIV)來進行缸內流場滾轉運動量測。藉由量測而分析得到的截面渦度滾轉比及循環渦度滾轉比等量化指標,評估流場滾轉運動的強度。實驗與計算結果比較,顯示實驗所量得的缸內渦旋產生與衍化過程與計算結果相類似,但是量化的對稱面渦度滾轉比及循環渦度滾轉比則約最大 81 %差異;非對稱面則有約最大 232 %差異。計算結果顯示,轉速對於流場結構衍化影響不大,但在較高轉速時滾轉比會較大。噴油時機若提早,則缸內平均粒徑SMD較小且混合較快、濃度分佈分佈較均勻。


    A two-valve, four-stroke, port-injection motorcycle engine was studied by using the experimental and computational methods. The experimental investigation employed a particle image velocimeter (PIV) to measure the in-cylinder tumble flow motion in the symmetry and offset planes. The results was used to evaluate the appropriation of the strength of the in-cylinder tumble motion and to validate the computational results. The computational analyses used the commercial code STAR-CD to calculate the in-cylinder flow as well as the distributions of the fuel droplet diameter and fuel concentration. The computational results of flow evolution process in the cylinder were quite resemble to those measured by experiments. While the calculated tumble ratios on symmetry plane were significantly deviated from the measurement results by about 81 %, and offset plane were about 232 %. However, the computational results could be used for relative evaluation when the design mechanisms for tumble motion were conduced. The engine speed did not cause apparent flow evolution difference. But the calculated tumble ratio at high engine speed presented larger value than the low speed did. The calculation results of port injection showed that injection at advanced crank angle caused the fuel droplet diameter finer and the fuel concentration more uniform.

    摘 要 i Abstract ii 致 謝 iii 目 錄 iv 符號索引 ix 表圖索引 xii 第一章 緒 論 1 1.1研究動機 1 1.2文獻回顧 3 1.3研究目的與方法 9 第二章 計算模擬之模型與方法 10 2.1 標的引擎 10 2.1.1 引擎規格 10 2.1.2 噴嘴型式 10 2.2 計算流力軟體的簡介 11 2.3 統御方程式 12 2.3.1 紊流模式 14 2.3.2 液滴分裂模型 16 2.3.3液滴與壁面交互作用模型 18 2.4 數值方法 20 2.4.1 離散化方程式 20 2.4.2 PISO解法理論 22 2.4.3 收斂標準 28 2.5 數值模擬 29 2.5.1 計算網格 29 2.5.2 邊界條件 30 2.5.3 初始條件 31 2.5.4 網格獨立性 32 2.5.5 取像相位與座標定義 32 2.5.6 物理參數定義 33 2.5.7 量化模式定義 38 第三章 實驗設備、儀器與方法 41 3.1實驗構想與方法 41 3.1.1引擎改裝 41 3.1.2引擎潤滑油路系統改裝 42 3.1.3取像相位與座標定義 43 3.1.4實驗引擎動力來源 44 3.1.5質點的選用 44 3.2實驗設備 45 3.2.1引擎型式與規格 45 3.2.2傳動系統 46 3.2.3編碼器 46 3.2.4質點植入系統 46 3.3實驗儀器 47 3.3.1質點影像速度儀 47 3.4物理參數定義 49 3.4.1樣本平均(ensemble average) 49 3.4.2紊流強度(turbulence intensity) 50 2.4.3面平均紊流強度(face-averaged turbulence intensity) 51 2.4.4循環紊流強度(cycle-averaged turbulence intensity) 52 第四章 未噴油之缸內冷流場 53 4.1 缸內氣流衍化過程 53 4.1.1計算截面於前視方向對稱面(z = 0) 53 4.1.2計算截面於前視方向對稱面位移z = 14.62 mm 55 4.1.3計算截面於前視方向對稱面位移z =-23.5 mm 56 4.4 吸氣量、溫度與壓力 58 4.4.1 進氣岐管入口截面的質量流率及壓力 58 4.4.2 容積效率 58 4.4.3 缸內平均壓力和溫度 59 4.5 滾轉比 59 4.5.1 正面對稱面(z = 0)之截面渦度滾轉比 59 4.5.2 正面非對稱面(z = 3.655 mm)之截面渦度滾轉比 60 4.5.3 正面非對稱面(z = -3.655 mm)之截面渦度滾轉比 60 4.5.4 正面非對稱面(z = 7.31 mm)之截面渦度滾轉比 61 4.5.5 正面非對稱面(z = -7.31 mm)之截面渦度滾轉比 61 4.5.6 正面非對稱面(z = 10.965 mm)之截面渦度滾轉比 62 4.5.7 正面非對稱面(z = -10.965mm)之截面渦度滾轉比 63 4.5.8 正面非對稱面(z = 14.62 mm)之截面渦度滾轉比 63 4.5.9 正面非對稱面(z = -14.62 mm)之截面渦度滾轉比 64 4.5.10 正面非對稱面(z = 21.93 mm)之截面渦度滾轉比 64 4.5.11正面非對稱面(z = -21.93 mm)之截面渦度滾轉比 65 4.5.12 正面非對稱面(z = 29.24 mm)之截面渦度滾轉比 66 4.5.13 正面非對稱面(z = -29.24 mm)之截面渦度滾轉比 66 4.5.14 不同轉速下的各截面循環渦度滾轉比 67 4.5.15 採用算術平均方法對於體平均滾轉比之影響 67 4.7.16 採用體積分率方法對於體平均滾轉比之影響 67 第五章 歧管噴油濃度分佈 69 5-1 N=1800RPM時不同噴油時機的油氣濃度分佈衍化 69 5.1.1.計算截面於前視方向對稱面(z = 0) 69 5.1.2. 計算截面於前視方向對稱面位移z = 14.62 mm 71 5.1.3. 計算截面於前視方向對稱面位移z =-23.5 mm 72 5-2 N=4000RPM時不同噴油時機下油氣濃度分佈衍化 74 5.2.1. 計算截面於前視方向對稱面(z = 0) 74 5.2.2 計算截面於前視方向對稱面位移z = 14.62 mm 76 5.2.3 計算截面於前視方向對稱面位移z =-23.5 mm 78 5-3 空間濃度變異 79 5-3-1 不同噴油時機於轉速N=1800RPM 79 5-3-2 不同噴油時機於轉速N=4000RPM 80 5-4 缸內平均SMD變化 80 5-5 缸內液滴蒸發率變化 80 第六章 缸內流場量測 82 6.1 對稱面循環變異與樣本次數之分析 82 6.1.1 缸內流場結構與樣本平均次數之分析 82 6.1.2 缸內任一固定點的速度與樣本平均次數之分析 83 6.1.3 速度分量沿座標軸變化與樣本平均次數之分析 83 6.2 缸內流場結構衍化過程 84 6.2.1汽缸中心對稱面上(symmetry plane, z=0) 84 6.2.2汽缸中心對稱面位移z = 14.62 mm 86 6.3絕對紊流強度分佈與衍化過程 89 6.3.1汽缸中心對稱面上(symmetry plane, z=0) 89 6.3.2汽缸中心對稱面位移z = 14.62 mm 91 6.4相對紊流強度分佈與衍化過程 93 6.4.1汽缸中心對稱面上(symmetry plane, z=0) 93 6.4.2汽缸中心對稱面位移z = 14.62 mm 95 6.5量化分析 97 6.5.1中心對稱面(z = 0)之截面渦度滾轉比 97 6.5.2中心對稱面位移z = 14.62 mm之截面渦度滾轉比 98 6.5.3中心對稱面(z = 0)之循環平均紊流強度 98 6.5.4中心對稱面位移z = 14.62 mm之循環平均紊流強度 98 第七章 計算與實驗結果比較 100 7.1 速度向量與流線圖 100 7.2 速度分量 100 7.3 循環平均滾轉比 101 7.4 討論 101 第八章 結論與建議 103 8.1結論 103 8.1.1 未噴油之缸內流場分析 103 8.1.2 歧管噴油分析 104 8.2 建議 104 參考文獻 105

    [1] Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, 1999, pp. 4029-4036.
    [2] 李進修, 王漢英, 汽機車引擎設計與分析技術, 國立清華大學出版社, 2005.
    [3] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
    [4] Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines − The 1986 Freeman Scholar Lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
    [5] Tennekes, H. and Lumley, J. L., A First Course in Turbulence, MIT Press, Cambridge and London, 1972.
    [6] Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” Journal of Engines, SAE Transactions-Section 3, Vol. 102, 1993, SAE 930821, pp. 1081-1092.
    [7] Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” Journal of Engines, SAE Transactions-Section 3, Vol. 98, 1989, SAE 892096, pp. 2042-203.
    [8] Endres, H., Neuβer, H.-J, and Wurms, R. “Influence of Swirl and Tumble on Economy and Emissions of Multi Valve SI Engines,” Journal of Engines, SAE Transactions-Section 3, Vol. 101, 1992, SAE 920516, pp. 942-953.
    [9] Omorl, S., Iwachido, K., Motomochi, M., and Hirako, O., “Effect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Multi-Valve SI Engines,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991 , SAE 910477, pp. 729-740.
    [10] Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, SAE Transactions, Vol. 88, 1979, SAE 790095, pp. 383-400.
    [11] Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” Journal of Engines, SAE Transactions, Vol. 88, 1979. pp. 371-382, SAE 790094.
    [12] Liou, T. M. and Santavicca, D. A. “Cycle Resolved LDV Measurements in a Motored IC Engine,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 107, 1985, pp. 232-240.
    [13] Nadarajah, S., Balabani, S., Tindal, M. J., and Yianneskis, M., “The Effect of Swirl on the Annular Flow past an Axisymmetric Poppet Valve,” Proceedings of the Institution of Mechanical Engineers, part C, Vol. 212, No. 6, 1998, pp. 473-484.
    [14] Khaligi, B. and Huebler, M. S., “A Transient Water Analog of Dual Intake Valve Engine for Intake Flow Visualization and Full-Field Velocity Measurements,” Journal of Engines, SAE Transactions-Section 3, Vol. 97, 1988, SAE 880519, pp. 6.877-6.891.
    [15] Coz, J. F. L., Henriot, S., and Pinchon P., “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark Ignition Engine − Focus on Cycle-Resolved Turbulence,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, SAE 900056, pp. 294-321.
    [16] Arcoumanis, C., Hu, Z., Vafidis, C., and Whitelaw, J. H., “Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark- Ignition Engines,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, SAE 900060, pp. 375-391.
    [17] Khaligi, B., “Intake-Generated Swirl and Tumble Motions in a 4-Valve Engine with Various Intake Configurations -Flow Visualization and Particle Tracking Velocimetry,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, SAE 900059, pp. 354-374.
    [18] Khalighi, B., “Study of the Intake Tumble Motion by Flow Visualization and Particle Tracking Velocimetry,” Experiments in Fluids, Vol. 10, No. 6, 1991, pp. 230-236.
    [19] Rönnbäck, M., Le W. X., and Linna, J. R., “Study of Induction Tumble by Particle Tracking Velocimetery in a 4-Valve Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, SAE 912376, pp. 1824-1838.
    [20] Adrian, R. J., “Particle Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, Vol. 23, 1991, pp. 261-304.
    [21] Choi, W. C. and Guezennec, Y. G., “Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2-D PIV and 3-D PTV,” Journal of Engines, SAE Transactions-Section 3, Vol. 108, 1999, SAE 1999-01-0957, pp. 1447-1459.
    [22] Lee, J. and Farrel, P. V., “Intake Valve Flow Measurements of an IC Engine Using Particle Image Velocimetry,” Journal of Engines, SAE Transactions-Section 3, Vol. 102, 1993, SAE 930480, pp. 629-647.
    [23] Valentino, G., Kaufman, D., and Farrel, P. V., “Intake Valve Flow Measurements Using PIV,” Journal of Fuels and Lubricants, SAE Transactions-Section 4, Vol. 102, 1993, SAE 932700, pp. 1156-1175.
    [24] Gharakhani, A. and Ghoniem, A. F., “3D Vortex Simulation of Intake Flow in a Port-Cylinder with a valve Seat and a Moving Piston,” Journal of Engines, SAE Transactions-Section 3, Vol. 105, 1996, SAE 9961195, pp. 1627-1639.
    [25] Freek, C., Hentschel, W., and Merzkich, W., “High Speed PIV − A Diagnostic Tool for IC-Engines,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 185.1 -185.10.
    [26] Richter, M., Axelsson, B., Aldén, M., Josefsson, G., Carlsson, L-O., Dahlberg, M., Nisbet, J., and Simonsen, H. “Investigation of the Fuel Distribution and the In-cylinder Flow Field in a Stratified Charge Engine Using Laser Techniques and Comparison with CFD-Modelling,” Journal of Fuels and Lubricants, SAE Transactions-Section 4, Vol. 108, 1999, SAE 1999-01-3540, pp. 1652-1663.
    [27] Reeves, M., Towers, D. P., Tavender, B., and Buckberry, C. H., “A High-Speed All-Digital Technique for Cycle-Resolved 2-D Flow Measurement and Flow Visualization within SI Engine Cylinders,” Optics and Lasers in Engineering, Vol. 31, October 1999, pp. 247-261.
    [28] Cao, Z.-M., Nishino, K., Mizuno, S., and Torii, K., “PIV Measurement of Internal Structure of Diesel Fuel Spray,” Experiments in Fluids (Suppl.), 2000, S211-S219.
    [29] Zolver, M., Klahr, D., and Torres, A., “An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation,” Journal of Engines, SAE Transactions-Section 3, Vol. 111, 2002, pp. 1919-1929, SAE 2002-01-1120.
    [30] Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, SAE 2003-01-0002, pp. 21-28.
    [31] Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, SAE 2004-32-0004, pp. 1710-1714.
    [32] Huang, R. F., Huang, C. W., Chang, S. B., Yang, H. S., and Hsu, W. Y., “Topological Flow Evolutions in Cylinder of a Motored Engine During Intake and Compression Strokes,” Journal of Fluids and Structures, Vol. 20, January 2005, pp. 105-127.
    [33] 林岱衛, 不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的 PIV診測, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。
    [34] 楊賀順, 平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。
    [35] 林冠旭, 增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測, 國立台灣科技大學機械工程技術研究所碩士論文, 2006。
    [36] Papageorgakis, G., Assanid, D. N., “Optimizing gaseous fuel-air mixing in direct injection engines using an RNG based k-ε model,” Journal of Engine, SAE Transactions-Section 3, Vol. 107, 1998, SAE 980135. pp. 82-107.
    [37] Arcoumanis, C., Godwin, S. N., and Kim, J. W., “Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 107, 1998, SAE 981044, pp. 1547-1562.
    [38] Iwamoto, Y., Noma, K., Nakayama, O., Yamauchi, T., and Ando, H., “Development of Gasoline Direct Injection Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 106, 1997, SAE 970541, pp. 777-793.
    [39] Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp. 240-242.
    [40] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995.
    [41] Kurniawan, W. H, Abdullah, S., Shamsudeen, A., “A computational fluid dynamics study of cold-flow analysis for mixture preparation in a motored four-stoke direct injection engine, ” Journal of Applied Science 7, Vol. 19, 2007, pp. 2710-2724.
    [42] 游耀鴻, 內燃機缸內氣流滾轉及旋轉運動最佳化技術, 國立台灣科技大學機械工程技術研究所碩士論文, 2011。
    [43] Flagan, R. C. and Seinfied, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, NJ, 1988, pp. 295-307.
    [44] Keane, R. D. and Adrian, R. J., “Theory of Cross-Correlation Analysis of PIV Images,” Applied Scientific Research, Vol. 49, No. 3, 1992, pp. 191-215.
    [45] Keane, R. D. and Adrian, R. J., “Optimization of Particle Image Velocimeter Part I: Double Pluse System.” Measurements Science and Technology, Vol. 1, No. 11, 1990, pp. 1202-1215.
    [46] Hart, D. P. “Super-resolution PIV by recursive local-correlation,” Journal of Visualization, Vol. 10, No. 1, 1999, pp. 1-10.

    無法下載圖示 全文公開日期 2017/06/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE