簡易檢索 / 詳目顯示

研究生: 李振銓
Chang-chuan Lee
論文名稱: 以溶膠凝膠法合成六鈮酸鉀及其在光分解水產氫之應用
K4Nb6O17 Synthesized by a Sol-gel Method and Its Application in Photocatalytic Water-Splitting
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 顧洋
Young Ku
李志甫
Jyh-Fu Lee
陳文正
Wen-Janq Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 102
中文關鍵詞: 六鈮酸鉀光觸媒水分解擇優晶面層間距離理論計算
外文關鍵詞: K4Nb6O17, preferred face, interlayer distance, materials studio, computation
相關次數: 點閱:177下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究目的是以溶膠凝膠法合成具擇優晶面的六鈮酸鉀光觸媒材料,並藉由X光繞射分析、掃描式電子顯微鏡、穿透式電子顯微鏡、紫外-可見光漫反射分析、拉曼光譜分析結合模擬計算來探討光觸媒結構對光分解水特性之影響。
    由X光繞射分析以及穿透式電子顯微鏡觀察可以得知,本研究所合成出的六鈮酸鉀為含有結晶水的斜方體結構,所得顆粒尺寸為1-2 μm,能隙值為3.6 eV,配合模擬六鈮酸鉀模型得到(0 4 0)、(2 3 1)、(0 12 1)晶面,因(0 4 0)晶面上未佔據任何金屬離子,無法吸附氫氧基,而(2 3 1)、(0 12 1)晶面上有鉀離子與鈮離子的存在,氫氧基可在鈮離子上吸附增進產氫效率,結合產氫結果,發現(0 4 0)晶面與產氫速率並無直接關係,而(0 12 1)與(2 3 1)的繞射強度比值與產氫速率成正比,又由拉曼光譜來看,950 cm-1譜帶代表NbO6八面體高度扭曲排列區域,結晶水的嵌入造成NbO6結構排列扭曲明顯地表現在950 cm-1譜帶的強度上,因結晶水的嵌入把層間距離撐開而增加觸媒邊緣的反應位置,與模型切面結果相印證,其強度亦與產氫速率有正比的關係。


    The goal of this study is to synthesize K4Nb6O17 photocatalysts with a preferred plane by the sol-gel method and to discuss the effect of the preferred plane and the structure of material on the catalytic efficiency of K4Nb6O17 towards water splitting reaction. The synthesized materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible diffusion reflection and Raman measurements and correspondingly carried out simulations for better understanding of the photocatalytic properties.
    It was found that the synthesized the hydrated K4Nb6O17 shows orthorhombic structure. The particle size and the band gap are 1-2 μm and 3.6 eV, respectively. These results are integrated with simulation model to get (0 4 0), (2 3 1) and (0 12 1) planes. The (0 4 0) plane appeared to be less active towards hydroxyl adsorption due to the absence of any cations on the plane. There have niobium cation and potassium cation on (2 3 1) and (0 12 1) planes. It will makes the hydroxyl adsorbed on the niobium cation ,and improve the rate of H2 evolution. From the results of H2 evolution, it appeared that the (0 4 0) is independent of activity. The XRD peak ratio of (0 12 1) to (2 3 1) is proportionate to the rate of H2 evolution. In the Raman spectrum of the photocatalyst, the band appeared at 950 cm-1 is indicative of highly distorted area of the NbO6 octahedral. The distorted orientation in NbO6 structure may cause by the intercalation of the water of crystallization and shows the intensity of 950 cm-1 band. Due to the intercalation of the crystallized water in the interior layer, the distance of interior layer may increase and increases the reaction site of the edge of the catalyst. Interestingly the result obtained from the simulation is matched well with the Raman spectra. Thus, the intensity of 950 cm-1 band is also proportionate to the rate of H2 evolution.

    中文摘要 I 英文摘要………………………...............………………………………II 致謝……………………………………………………......……………IV 目錄………………………………………………………….......………V 圖目錄……………………………………………………………...…VIII 表目錄….…………………………………………………...…….........XII 第一章 緒論…………………………………………………..………..1 1.1前言………………………………………………………………..…1 1.2 光觸媒簡介………………………………………………………….3 1.2.1光觸媒之發現………………………………………………….3 1.2.2光觸媒反應原理……………………………………………….4 1.3溶膠凝膠法…………………………...………………………………9 1.3.1簡介…………………………………………………………….9 1.3.2檸檬酸凝膠法………………………………………………...11 第二章 文獻回顧…………………………………..…………………..12 2.1六鈮酸鉀光觸媒介紹………………………………………………12 2.1.1六鈮酸鉀之鈣鈦礦結構(Perovskite)………………………...12 2.1.2 六鈮酸鉀之觸媒催化反應...…….…......................................18 2.2二氧化鈦晶面水分解現象簡介………………..…....……………...22 2.3 研究動機與目的……………….…………………………………..24 第三章 實驗方法和儀器設備……………………..……......................25 3.1儀器設備…………………………………………………………….25 3.2實驗藥品……………………….…………...………….……………26 3.3 六鈮酸鉀光觸媒材料合成………………….……………..............27 3.4材料鑑定與分析………………………….………………................30 3.4.1粉末X光繞射(XRD)分析………….…….…………………..30 3.4.2 掃描式電子顯微鏡(SEM)表面形態分析………...…….…..31 3.4.3 穿透式電子顯微鏡(TEM) 材料粒徑觀測…………………31 3.4.4 紫外-可見光漫反射(Diffuse Reflection)光譜量測…………31 3.4.5拉曼(Raman)光譜量測…..……….……….…………………33 3.4.6 物理吸附分析(BET)……………………….…….………….33 3.5 光觸媒反應裝置…………………………..……………………….35 第四章 結果與討論……………….……………………...….………...37 4.1晶格結構分析…………………………………………….................39 4.1.1 XRD圖譜分析………………………………………………..39 4.1.2 場發射穿透式電子顯微鏡觀察……..………………………49 4.1.3 XRD模擬及模型建構………………………………………..51 4.2 表面形態觀測……………………………………………………...57 4.2.1場發射掃瞄式電子顯微鏡表面觀察…………………………57 4.2.2比表面積分析…………………………………………………62 4.3 UV-visible漫反射光譜分析……………….……………………….64 4.4拉曼光譜分析……………………….………………………………68 4.5光催化水分解反應……………………….…………………………74 第五章 綜合討論………………………………………………..…......80 5.1擇優晶面對光催化反應之影響………….…………………………80 5.2層間距離對光催化反應之影響…………………………………….85 第六章 結論………………………………………………..…..............87 第七章 未來方向....................................................................................89 第八章 參考文獻....................................................................................90

    1. J. M. Ogden, "Hydrogen: The Fuel of the Future?," in Physics Today(American Institute of Physics, 2002), pp. 69-74.
    2. A. Fujishima, and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature 238, 37-38 (1972).
    3. M. Grätzel, "Photoelectrochemical cells," Nature 414, 338-344 (2001).
    4. A. Kudo, "Photocatalyst materials for water splitting," Catalysis Surveys from Asia 7, 31-38 (2003).
    5. S. Ikeda, A. Tanaka, K. Shinohara, M. Hara, J. N. Kondo, K.-i. Maruya, and K. Domen, "Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17," Microporous Materials 9, 253-258 (1997).
    6. W. Shangguan, and A. Yoshida, "Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxide," International Journal of Hydrogen Energy 24, 425-431 (1999).
    7. J. Livage, and M. Henry, Ultrastructure Processing of Advanced Ceramics (Wiley, New York, 1988).

    8. M. P. Pechini, "Barium titanium citrate, barium titanate and processes for producing same," (U.S., 1969).
    9. D. Hennings, and W. Mayr, "Thermal decomposition of (BaTi) citrates into barium titanate," J. Solid State Chem. 26, 329 (1978).
    10. G. A. Hutchins, G. H. Maher, and S. D. Ross, "Control of the Ba : Ti 3C6H8O7.6H2O," Am. Ceram. Soc. Bull. 66, 681 (1987).
    11. M. Rajendran, and M. S. Rao, "Formation of BaTiO3 from citrate precursor," J. Solid State Chem. 113, 239-247 (1994).
    12. D. B. Meadowcroft, "Low-cost oxygen electrode material," Nature 226, 847-848 (1970).
    13. R. J. H. Voorhoeve, J. P. Remeika, P. E. Freeland, and B. T. Matthias, "Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust," Science 177, 353-354 (1972).
    14. R. J. H. Voorhoeve, in Advanced Materials in Catalysis(Academic Press, New York, 1977), p. 129.
    15. J. B. Goodenough, and J. M. Longo, Landolt-Bornstein New Series (Speinger-Verlag Berlin and New York, 1970).

    16. V. M. Goldschmidt, "Geochemische Verteilungsgesetze der Elemente VII," in Skrif. Nor. Vidensk Akad. Mat. Natur. Oslo. I. (1926), p. 7.
    17. C. B. Alcock, and J. J. Carberry, "The preparation and properties of highly conductive nonstoichiometric oxide catalysts," Solid State Ionics 50, 197-202 (1992).
    18. T. Selyama, N. Yamazoe, and K. Eguchi, "Characterization and activity of some mixed metal oxide catalysts," Industrial & Engineering Chemistry Product Research and Development 24, 19-27 (1985).
    19. K. Domen, A. Kudo, A. Tanaka, and T. Onishi, "Overall photodecomposition of water on a layered niobate catalyst," Catalysis Today 8, 77-84 (1990).
    20. M. Koinuma, H. Seki, and Y. Matsumoto, "Photoelectrochemical properties of layered niobate (K4Nb6O17) films prepared by electrophoretic deposition," Journal of Electroanalytical Chemistry 531, 81-85 (2002).
    21. M. Gasperin, and M. T. L. Bihan, "Mecanisme ďhydratation des niobates alcalins lamellaires de formule A4Nb6O17 (A = K, Rb, Cs)," Journal of Solid State Chemistry 43, 346-353 (1982).
    22. A. Reisman, and F. Holtzberg, "Phase equilibria in the system K2CO3-Nb2O5 by the method of differential thermal analysis," Journal of the American Chemical Society 77, 2115-2119 (1955).
    23. C. D. Whiston, and A. J. Smith, "Double oxides containing niobium or tantalum. I. System including alkali metals," Acta Crystallographica 19, 169-174 (1965).
    24. M. Kestigian, F. D. Leipziger, J. R. Carter, and F. G. Garabedian, "Preparation of K4Nb6O17 single crystals," Journal of the American Ceramic Society 49, 517 (1966).
    25. K. Nassau, W. Shiever, and J. L. Bernstein, "Crystal growth and properties of mica-like potassium niobates," Journal of The Electrochemical Society 116, 348-353 (1969).
    26. H. Shindo, M. Kaise, H. Kondoh, C. Nishihara, H. Hayakawa, S. Ono, and H. Nozoye, "Structure of the cleaved surface of K4Nb6O17.3H2O studied by atomic force microscopy," Langmuir 8, 353-356 (1992).
    27. G. H. Du, L.-M. Peng, Q. Chen., S. Zhang, and W. Z. Zhou, "Imaging helical potassium hexaniobate nanotubes," Applied Physics Letters 83, 16381640 (2003).

    28. Y. I. Kim, S. J. Atherton, E. S. Brigham, and T. E. Mallouk, "Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors," Journal of Physical Chemistry 97, 11802-11810 (1993).
    29. M. A. Bizeto, and V. R. L. Constantino, "Structure aspects and thermal behavior of the proton-exchanged layered niobate K4Nb6O17," Materials Research Bulletin 39, 1729-1736 (2004).
    30. Z. Tong, S. Takagi, H. Tachibana, K. Takagi, and H. Inoue, "Novel soft chemical method for optically transparent Ru(bpy)3-K4Nb6O17 thin film," Journal of Physical Chemistry B 109, 21612-21617 (2005).
    31. K. Teshima, K. Horita, T. Suzuki, N. Ishizawa, and S. Oishi, "Flux growth and characterization of layered K4Nb6O17 crystals," Chemistry of Materials 18, 3693-3697 (2006).
    32. A. Kudo, and T. Sakata, "Effect of ion exchange on photoluminescence of layered niobates K4Nb6O17 and KNb3O8," Journal of Physical Chemistry 100, 17323-17326 (1996).
    33. Q. Wei, and T. Nakato, "Preparation of a layered hexaniobate-titania nanocomposite and its photocatalytic activity on removal of phenol in water," Journal of Porous Materials (2008).
    34. K.-H. Chung, and D.-C. Park, "Photocatalytic decomposition of water over cesium-loaded potassium niobate photocatalysts," Journal of Molecular Catalysis A: Chemical 129, 53-59 (1998).
    35. S. Uchida, Y. Inoue, Y. Fujishiro, and T. Sato, "Hydrothermal synthesis of K4Nb6O17," Journal of Materials Science 33, 5125-5129 (1998).
    36. J.-F. Liu, X.-L. Li, and Y.-D. Li, "Synthesis and characterization of nanocrystalline niobates," Journal of Crystal Growth 247, 419-424 (2003).
    37. H. Hayashi, Y. Hakuta, and Y. Kurata, "Hydrothermal synthesis of potassium niobate photocatalysts under subcritical and supercritical water conditions," Journal of Materials Chemistry 14, 2046-2051 (2004).
    38. T. Zhong, J. Tang, M. Zhu, Y. Hou, H. Wang, and H. Yan, "Synthesis and characterization of layered niobate K4Nb6O17 thin films by niobium-chelated precursor," Journal of Crystal Growth 285, 201-207 (2005).

    39. K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K.-i. Maruya, and T. Onishi, "Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts," Journal of the Chemical Society, Chemical Communications, 356-357 (1986).
    40. K. Domen, A. Kudo, M. Shibata, A. Tanaka, K.-i. Maruya, and T. Onishi, "Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure," Journal of the Chemical Society, Chemical Communications, 1706-1707 (1986).
    41. J. Yoshimura, A. Kudo, A. Tanaka, K. Domen, K.-i. Maruya, and T. Onishi, "H2 evolution cause by electron transfer between different semiconductors under visible light irradiation," Chemical Physics Letters 147, 401-404 (1988).
    42. J. Yoshimura, A. Tanaka, J. N. Kondo, and K. Domen, "Visible light induced hydrogen evolution on CdS/K4Nb6O17 photocatalyst," Bulletin of the Chemical Society of Japan 68, 2439-2445 (1995).
    43. A. Kudo, A. Tanaka, K. Domen, K.-i. Maruya, K.-i. Aika, and T. Onishi, "Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst," Journal of Catalysis 111, 67-76 (1988).
    44. A. Kudo, K. Sayama, A. Tanaka, K. Asakura, K. Domen, K. Maruya, and T. Onishi, "Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction mechanism," Journal of Catalysis 120, 337-352 (1989).
    45. N. Miyamoto, H. Yamamoto, R. Kaito, and K. Kuroda, "Formation of extraordinarily large nanosheets from K4Nb6O17 crystals," Chemical Communications 2002, 2378-2379 (2002).
    46. T. Nakato, N. Miyamoto, A. Harada, and H. Ushiki, "Sol-gel transition of niobium oxide nanosheet colloids: Hierarchical aspect of a novel macroscopic property appearing in colloidally dispersed states of layered niobate K4Nb6O17," Langmuir 19, 3157-3163 (2003).
    47. N. Miyamoto, and T. Nakato, "Liquid crystalline nanosheet colloids with controlled particle size obtained by exfoliating single crystal of layered niobate K4Nb6O17," Journal of Physical Chemistry B 108, 6152-6159 (2004).
    48. M. A. Bizeto, and V. R. L. Constantino, "Porphyrin inclusion into hexaniobate nanoscrolls," Microporous and Mesoporous Materials 83, 212-218 (2005).

    49. Y. Kobayashi, H. Hata, M. Salama, and T. E. Mallouk, "Scrolled sheet precursor route to niobium and tantalum oxide nanotubes," Nano Letters 7, 2142-2145 (2007).
    50. A. Furube, T. Shiozawa, A. Ishikawa, A. Wada, K. Domen, and C. Hirose, "Femtosecond transient absorption spectroscopy on photocatalysts: K4Nb6O17 and Ru(bpy)32+-intercalated K4Nb6O17 thin films," Journal of Physical Chemistry B 106, 3065-3072 (2002).
    51. A. Furube, T. Shiozawa, A. Ishikawa, A. Wada, C. Hirose, and K. Domen, "Primary process of photogenerated carriers in ion-exchanged K4Nb6O17 thin films investigated by femtosecond transient absorption spectroscopy," Chemical Physics 285, 31-37 (2002).
    52. C. Holmberg, and B. I. Lundqvist, "Selection in catalytic water decomposition by molecular-orbital manipulation," Surface Science 152/153, 710-719 (1985).
    53. C. T. Au, J. Breza, and M. W. Roberts, "Hydroxylation and dehydroxylation at Cu(1 1 1) surfaces," Chemical Physics Letters 66, 340-343 (1979).

    54. G. B. Fisher, and B. A. Sexton, "Identification of an adsorbed hydroxyl species on the Pt(1 1 1) surface," Physical Review Letters 44, 683-686 (1980).
    55. C. Benndorf, C. Nöbl, M. Rüsenberg, and F. Thieme, "H2O interaction with clean and oxygen precovered Ni(110)," Surface Science 111, 87-101 (1981).
    56. C. T. Au, M. W. Roberts, and A. R. Zhu, "Surface hydroxylation at a Zn(0001)-O surface," Surface Science 115, L117-L123 (1982).
    57. T. E. Madey, and F. P. Netzer, "The adsorption of H2O on Ni(111); influence of preadsorbed oxygen on azimuthal ordering," Surface Science 117, 549-560 (1982).
    58. R. Stockbauer, D. M. Hanson, S. A. Flodström, and T. E. Madey, "Photon-stimulated desorption and ultraviolet photoemission spectroscopic study of the interaction of H2O with a Ti(001) surface," Physical Review B 26, 1885-1892 (1982).
    59. C. N. C. G. Tengstål, "Adsorption and reaction of water, oxygen, and hydrogen on Pd(100): Identification of adsorbed hydroxyl and implications for the catalytic H2-O2 reaction," Journal of Chemical Physics 80, 3463-3468 (1984).
    60. C. Benndorf, and C. Nöbl, "H2O adsorption on oxygen-dosed Ni(110): formation and orientation of OH(ad)," Surface Science 138, 292-304 (1984).
    61. K. Y. Yu, J. N. Miller, P. Chye, W. E. Spicer, N. D. Lang, and A. R. Williams, "Study of sorption of oxygen on Al," Physical Review B 14, 1446-1449 (1976).
    62. A. Fahmi, and C. Minot, "A theoretical investigation of water adsorption on titanium dioxide surfaces," Surface Science 304, 343-359 (1994).
    63. H. P. Boehm, and M. Herrmann, "Über die chemie der oberfläche des titandioxids. I. Bestimmung des aktiven wasserstoffs, thermische entwässerung und rehydroxylierung," Zeitschrift für anorganische und allgemeine Chemie 352, 156 (1967).
    64. J. W. Lo, Y. W. Chuan, and G. A. Somorjai, "Electron-spectroscopy studies of chemisorption of O2, H2 and H2O on TIO2(100) surfaces with varied stoichiometry - evidence for photogeneration of Ti+3 and for its importance in chemisorption," Surface Science 71, 199 (1978).
    65. Y. Suda, and T. Morimoto, "Molecularly adsorbed H2O on the bare surface of TiO2 (Rutile)," Langmuir 3, 786-788 (1987).
    66. T. P. Lin, and H. K. A. Kan, "Calculation of reflectance of a light diffuser with nonuniform absorption," Journal of the Optical Society of America 60, 1252-1256 (1970).
    67. R. W. Kessler, G. Krabichler, S. Uhl, D. Oelkrug, W. P. Hagan, J. Hyslop, and F. Wilkinson, Optical Acta 30, 1099 (1983).
    68. S. H. Byeon, and H. J. Nam, "Neutron diffraction and FT-Raman study of ion-exchangeable layered titanates and niobates," Chem. Mater. 12, 1771-1778 (2000).
    69. K. Fukumi, and S. Sakka, "Coordination state of Nb5+ ions in silicate and gallate glasses as studied by Raman spectroscopy," Journal of Materials Science 23, 2819-2823 (1988).
    70. J. M. Jehng, and I. E. Wachs, "Structural chemistry and Raman spectra of niobium oxides," Chem. Mater. 3, 100-107 (1991).
    71. L. A. Farrow, and E. M. Vogel, "Raman spectra of phosphate and silicate glasses doped with the cations Ti, Nb and Bi," Journal of Non-Crystalline Solids 143, 59-64 (1992).
    72. H. J. Kim, S. H. Byeon, and H. Yun, "Raman spectra of the solid-solution between Rb2La2Ti3O10 and RbCa2Nb3O10," Bulletin of the Korean Chemical Society 22, 298-302 (2001).
    73. H. Kato, and A. Kudo, "Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts," Catalysis Letters 58, 153-155 (1999).
    74. W. H. Lin, C. Cheng, C. C. Hu, and H. S. Teng, "NaTaO3 photocatalysts of different crystalline structures for water splitting into H2 and O2," Applied Physics Letters 89, 211904 (2006).
    75. K. Domen, J. Yoshimura, T. Sekine, A. Tanaka, and T. Onishi, "A novel series of photocatalysis with an ion-exchangeable layered structure of niobate," Catalysis Letters 4, 339-344 (1990).
    76. 陳悅芳, "半導體光觸媒的製備及其在水分解反應之應用," in 化學工程與材料工程研究所(國立中央大學, 2005).
    77. 李東和, "鈮系複合金屬氧化物光觸媒之製備及其於可見光水分解製氫反應之研究," in 材料科學與工程學系(國立東華大學, 2007).

    QR CODE