研究生: |
林政霆 Zheng-Ting Lin |
---|---|
論文名稱: |
整合S 曲線於速度控制之機械手臂路徑規劃研究 Study of Path Planning Integrating S-Curve Speed Control for Robot Manipulators |
指導教授: |
郭永麟
Yong-Lin Kuo |
口試委員: |
孔健君
none 楊振雄 Cheng-Hsiung Yang 郭鴻飛 Hung-Fei Kuo |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 自動化及控制研究所 Graduate Institute of Automation and Control |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 並聯式機械手臂 、路徑規劃 、梯形速度控制 、S-curve 速度控制 |
外文關鍵詞: | Delta robot, path planning, Trapezoid speed control, S-curve speed control |
相關次數: | 點閱:1728 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
並聯式機械手臂於現今已是工業上非常重要以及經常被廣泛使用的一種機械手臂。本文研究了並聯式機械手臂的歷史以及發展過程,同時也點出九個並聯式機械手臂與串聯式機械手臂最大的差異性以及並聯式機械手臂在特定工業上的廣泛應用。藉由已發展成熟的Delta 並聯式機械手臂理論本論文清楚的推導出Delta 並聯式機械手臂的正向運動學、逆向運動學、奇異點分析以及工作空間上的分析。
以下我們會針對Delta 並聯式機械手臂進行各種的路徑規劃,其中曲線包含:直線、圓、拋物線、螺旋線、貝茲曲線、Cubic-spline、B-spline。由上敘述中所提及的路徑皆為現今工業上使用頻繁的路徑,而當我們規劃好路徑後,將會利用辛普森積分法以及二分法結合兩種不同的速度控制以達到平滑的效果;其中速度包含了:梯形速度控制以及S-curve 速度控制,以上這兩種速度控制方式同時也是現今工業上經常運用的方式。
針對Delta並聯式機械手臂,本文於文末會進行不同的路徑,分別套用於S-curve 速度控制進行討論以及分析。
A parallel robot is one kind of robot that plays an important role, and also the Delta robot is widely used in industry nowadays. It not only presents the background of the Delta robot including its history and development in this thesis but also explains the industrial applications, the current design and the future trend of Delta robot. Then it proposes nine differences between the parallel robot and the series robot. Ultimately, the kinematics of the Delta robot, including the direct and inverse kinematics, the workspace, and the singularity analysis, are systematically presented in detailed.
This study mainly focuses on the trajectory planning for the Delta robot, which includes the path planning in the three-dimensional space and the motion profile design of the end-effector. The path planning provides straight lines, circles, parabolic curves, Bézier curves, Cubic-spline curves, and B-spline curves. The motion profile design provides the trapezoid speed control and the S-curve speed control. These paths and the speed control methods are usually applied to the industry. When the path is specified, the Simpson's rule and the bisection method are applied to determine the coordinate of the end-effector at any specific time, and then the angles of the active joints can be evaluated based on the inverse kinematics.
[1]Bricard, Raoul. “Mémoire sur la théorie de l'octaédre articulé.” Journal de
Mathématiques Pures et Appliquées, Liouville, vol. 3, pp. 113-148, 1987.
[2]Stewart, Doug. “A platform with six degrees of freedom.” Proceedings of the
Institution of Mechanical Engineers, vol. 180, no. 1, pp. 371-386, 1965.
[3]McCallion, H., and P. D. Truong. “The analysis of a six degree of freedom work
station for mechanized assembly.” Proc. 5th World Congress on Theory of
Machines and Mechanisms. v ol. 611, 1979.
[4]Clavel, Reymond. “Conception d’un robot parallèle rapide à 4 degrés de liberté.”,
1991.
[5]Clavel, Reymond. “Device for the Movement and Positioning of an Element in
Space.” US Patent No. 4,976,582, Dec 11, 1990.
[6]Brogårdh, Torgny. “Present and future robot control development—An industrial
perspective.” Annual Reviews in Control 31.1, 2007.
[7]Hägele, Martin, Klas Nilsson, and J. Norberto Pires. “Industrial robotics.”
Springer handbook of robotics. Springer Berlin Heidelberg, 2008.
[8]Lueth, T. C., Hein, A., Albrecht, J., Demirtas, M., Zachow, S., Heissler, E., and
Bier, J. “A surgical robot system for maxillofacial surgery.” Industrial Electronics
Society, 1998. IECON'98. Proceedings of the 24th Annual Conference of the
IEEE. v ol. 4. IEEE, 1998.
[9]林政霆, 黃芃毓, 邱重融, 郭永麟, 機械月刊, 第485期, pp. 文9-文22, 2015
[10]Miller, Karol. “Experimental verification of modeling of DELTA robot dynamics
by direct application of Hamilton's principle.” Robotics and Automation, 1995.
Proceedings., 1995 IEEE International Conference on. v ol. 1. IEEE, 1995.
[11]F. Pierrot, C. Reynaud and A. Fournier. “DELTA: a Simple and Efficient Parallel
Robot.” Robotica, vol .8, no. 2, pp. 105-109, Apr. 1990.
[12]Irwin, J. L., Pearce, J. M., Anzolone, G., and Oppliger, D. E. “The RepRap 3-D
Printer Revolution in STEM Education.” 121st ASEE Annual Conference and
Exposition, 2014.
[13]Horvath, Joan. “The Desktop 3D Printer.” Mastering 3D Printing. Apress, 2014.
[14]M. López, E. Castillo, G. García, and A. Bashir, A. “Delta robot: inverse, direct, and intermediate Jacobians,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 220, no. 1, pp. 103-109, 2005.
[15]M.A. Laribi, L.Romdhane, and S.Zeghloul, “Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace,” Mechanism and Machine Theory, vol. 42, no.7, pp. 859-870, 2005.
[16]Stock, Michael, and Karol Miller. “Optimal kinematic design of spatial parallel
manipulators: application to linear delta robot.” Journal of Mechanical Design
125.2, pp. 292-301, 2003
[17]Carricato, Marco, and Vincenzo Parenti-Castelli. “Singularity-free fully-isotropic
translational parallel mechanisms.” The International Journal of Robotics
Research 21.2, pp. 161-174, 2002.
[18]STEPHAN K. CHALUP , LUKASZ WIKLENDT, “Variations of the two-spiral task ,” Connection Science, Vol. 19, No. 2, pp.183–199 , June 2007.
[19]J.R. A´ lvarez-Sa´nchez, “Injecting Knowledge into the Solution of the Two-Spiral
Problem,” Neural Comput & Applic, pp. 265-272,1999.
[20]Robert C.Beach, An Introduction to the Curves and Surfaces of Computer-Aided Design, Chapter 7, pp.184-216.
[21]Sky McKinley and Megan Levine, “Cubic Spline Interpolation.”
[22]Bartels, R. H.; Beatty, J. C.; and Barsky, B. A. “Hermite and Cubic Spline Interpolation.” Ch. 3 in An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. San Francisco, CA: Morgan Kaufmann, pp. 9-17, 1998.
[23]Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. “Cubic Spline Interpolation.” §3.3 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 107-110, 1992.
[24]CHARLES A. HALL, and W. WESTON MEYER. “Optimal Error Bounds for Cubic Spline Interpolation,” Journal of Approximation Theory, pp.105-122,1976
[25]Robert C.Beach, An Introduction to the Curves and Surfaces of Computer-Aided Design, Chapter 8, pp.217-229
[26]施慶隆,李文猶, 機電整合控制-多軸運動設計與應用, Chapter 2-5, pp. 10~14 ,2015.
[27]Wolfgang Boehm, “Inserting new knots iton B-spline curves,” Computer-Aided Design, pp.217-229
[28]史偉志, “合成馬達運動曲線改善間歇定位平台之定位時間, ” 國立中山大學機械與機電工程研究所, 2006.
[29]Rao V.Dukkipati, “Numerical methods, ” Chapter 7-4, pp.244-247
[30]D. Roddy, “A method of using Simpson's rule in the DFT,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. assp-29, no. 4, 1981.
[31]J. L. Volakis, and D. B. Davidson, “Calculating directivities with the two-dimensional Simpson's rule,” IEEE Antennas and Propagation Magazine, vol. 46, no. 4, 2004.
[32]Peijie Zhang, Yantao Tian*, Zhenze Liu, “Bisection Method for Evaluation of Attraction Region of Passive Dynamic Walking,” Proceedings of the 4th International Conference on Autonomous Robots and Agents, 2009, Wellington, New Zealand.
[33]Chetan Chhabra, “Improvements in the Bisection Method of finding roots of an equation,” Advance Computing Conference (IACC), 2014 IEEE International, 2014, Gurgaon .
[34]程曉旭,耿魯靜,張海,王勇, 數值分析使用c語言第三版, Chapter 6-2, pp.6-3~6-5