簡易檢索 / 詳目顯示

研究生: 胡婷鈞
Ting-Chun Hu
論文名稱: 可於壁面凸塊進行橫向攀爬之抓技機器人設計與運動控制策略研究
Development and Locomotion Control Strategy of a Brachiation Robot Capable of Climbing along the Ledges on a Vertical Wall
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 郭重顯
Chung-Hsien Kuo
林沛群
Pei-Chun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 112
中文關鍵詞: 橫向攀爬壁面凸塊抓技機器人中樞模式產生器運動控制
外文關鍵詞: transverse-climbing, ledges on the wall, brachiation robot, central pattern generator, locomotion control
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以台灣建築外牆常見的窗簷、遮陽板或陽台欄杆等牆面凸起物為目標,設計可在這些凸塊抓握並進行壁面橫向移動的新型抓技機器人。我們根據體育競技選手在攀岩時的獨特運動方式設計機器人的運動模式並採用中樞模式產生器(CPG)實現機器人向右與向左橫向攀爬之運動控制。不同於既有文獻中使用CPG控制器進行機器人運動模式切換的狀況,本研究的應用場景在機器人切換攀爬步態過程中有可能會因某隻夾爪鬆開使其從壁面掉落,因此我們針對此問題加入限制條件以最佳化方式求得攀爬步態的CPG控制參數確保步態轉換時的強健性。為增強此橫向攀爬機器人對於戶外環境的適應能力,我們亦加入紅外線感測器偵測壁面凸起物之可能傾角,並採用夾爪姿態回授控制降低量測誤差。基於感測器量得之傾角資訊,我們以結合路徑規劃與CPG之運動控制策略使機器人能自主地即時調整自身運動姿態,順暢攀爬具傾角變化的壁面場景。本研究最後參考戶外實際壁面設計多組機器人攀爬實驗場景驗證本研究所提運動控制策略之可行性,實驗結果顯示機器人可成功完成水平與具傾角之場景往復攀爬動作。


Inspired by the commonly seen window eaves, balcony visors, and balcony balustrades in Taiwan’s buildings, this study aims to develop an innovative brachiation robot which can transversely move along these bulges on the wall. The robot is designed to mimic the unique locomotion styles performed by the players of sports competition shows and the central pattern generator (CPG) is particularly adopted to implement such transverse-climbing locomotion control. Because the discussed application scenario is different from the other existing CPG based locomotion switching scenarios, the robot’s grippers may become loose and cause the robot fall off from the hand-holding ledge during the course of locomotion transition. To address this robustness issue a set of optimal locomotion parameters in CPG controller is found by adding posture constraints to the formulated optimization problem. Four infrared sensors are installed on the robot to detect the inclined angles of the ledges on the wall and thus improve the robot’s adaptability to environmental changes. Gripper posture feedback control is also implemented associated with the whole CPG locomotion control system for reduced measurement noises. Based on the inclined angle information provided from the IR sensors, a locomotion control strategy integrated with path planning and CPG control is proposed with the goal of making the designed robot autonomously adjust the locomotion styles subject to the changes in inclined angles. A number of testing scenarios were set up to validate the feasibility of the proposed locomotion control strategy. The experimental results demonstrate that the developed robot can successfully finish the reciprocating transverse-climbing tasks containing both horizontal and inclined ledge scenarios.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 7 1.4 本文貢獻與架構 12 第二章 系統設備架構 13 2.1 機構設計 13 2.2 紅外線測距感測器 16 2.3 Arduino 控制板 27 2.4 AX-18A 28 第三章 中樞模式產生器演算法 29 3.1 Kuramoto’s 神經振盪器 30 3.2 攀爬步態分析 33 3.3 參數最佳化 36 3.4 步態轉換分析 39 3.5 夾爪姿態回授 44 第四章 路徑規劃 47 4.1 正、反向運動學推導 47 4.2 攀爬姿態分析與限制 55 4.3 環境資訊取得 62 4.4 系統流程架構 63 4.5目標移動位置之推導 65 第五章 實驗結果與討論 69 5.1實驗場景一:水平桿件 69 5.2 實驗場景二:仿雙坡式屋頂場景 80 5.3 實驗場景三:向上傾斜桿件 87 第六章 結論與未來目標 91 6.1 結論 91 6.2 未來目標 92 參考文獻 94

[1] Silva, Manuel F. Machado, J. A. Tenreiro, “A Survey of Technologies and Applications for Climbing Robots Locomotion and Adhesion,” InTech, 2010
[2] W. Shen, J. Gu, Y. Shen, “Permanent magnetic system design for the wall-climbing robot,” Applied Bionics and Biomechanics, vol. 3, no. 3, pp. 151-159, 2006
[3] Zeliang Xu, Peisun Ma, “A wall-climbing robot for labelling scale of oil tank's volume,” Robotica,vol. 20, issue 2, pp. 209-212, March 2002
[4] Shanqiang Wu, Gengfeng Zheng, Tao Liu, Senior Member, IEEE and Binrui Wang, “A magnetic wall climbing robot with non-contactable and adjustable adhesion mechanism,” 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), Okinawa, Japan, July 2017
[5] A. Nishi, “A wall climbing robot using propulsive force of propeller,” Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments, Italy, June 1991
[6] G. Clark Haynes, Alex Khripin, Goran Lynch, Jonathan Amory, Aaron Saunders, Alfred A. Rizzi, Daniel E. Koditschek, “Rapid Pole Climbing with a Quadrupedal Robot, ” 2009 IEEE International Conference on Robotics and Automation, Japan, May 2009
[7] R. Lal Tummala, Ranjan Mukherjee, Ning Xi, Dean Aslam, Hans Dulimarta, Jizhong Xiao, Mark Minor, Girish Dangi, “Climbing the walls [robots],” IEEE Robotics & Automation Magazine, vol. 9, issue 4, pp. 10-19, Dec. 2002
[8] Haifei Zhu, Yisheng Guan, Member, IEEE, Wenqiang Wu, Lianmeng Zhang, Xuefeng Zhou, Hong Zhang, “Autonomous Pose Detection and Alignment of Suction Modules of a Biped Wall-Climbing Robot,” IEEE/ASME Transactions on Mechatronics, vol. 20, issue 2, April 2015
[9] Yeoreum Yoon, Daniela Rus, “Shady 3D: A Robot that Climbs 3D Trusses,” 2007 IEEE International Conference on Robotics and Automation Roma, Italy, April 2007
[10] 吳佳儒, “攀爬機器人之研製與控制,” 國立雲林科技大學電機工程系碩士班, 2007
[11] 李宗禮, 賴正和, “磁鐵履帶式攀爬機器人,” 南開科技大學車輛與機電產業研究所, 2010
[12] Ig Mo Koo, Tran Duc Trong, Yoon Haeng Lee, Hyungpil Moon, Jachoon Koo, Sun Kyu Park, Hyouk Ryeol Choi, “Development of Wall Climbing Robot System by Using Impeller Type Adhesion Mechanism,” Journal of Intelligent & Robotic Systems, vol. 72, issue 1, pp. 57-72, Oct. 2013
[13] Jörg Mämpel, Kurt Gerlach, Cornelius Schilling, Hartmut Witte, “A modular robot climbing on pipe-like structures,” 4th International Conference on Autonomous Robots and Agents, New Zealand, Feb. 2009
[14] Fengyu Xu, Bei Wang, Jingjin Shen, JinLong Hu, Guoping Jiang, “Design and Realization of the Claw Gripper System of a Climbing Robot,” Journal of Intelligent & Robotic Systems, vol. 89, issue 3-4, pp. 301-317, March 2018
[15] Domenico Longo, Glovanni Muscato, “The Alicia3 Climbing Robot: a Three-Module Robot for Automatic Wall Inspection,” IEEE Robotics & Automation Magazine, vol. 13, no. 1, pp.42-50, March 2006
[16] Junke Shen, Yong Liu, “Design and Analysis of an Obstacle-crossing Wall-Climbing Robot Mechanism,” IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, China, June 2015
[17] Yisheng Guan, Haifei Zhu, Wenqiang Wu, Xuefeng Zhou, Li Jiang, Chuanwu Cai, Lianmeng Zhang, Hong Zhang, “A Modular Biped Wall-Climbing Robot With High Mobility and Manipulating Function,” IEEE/ASME Transactions on Mechatronics, vol. 18, issue 6, Dec. 2013
[18] Daniel Santos, Barrett Heyneman, Sangbae Kim, Noe Esparza, and Mark R. Cutkosky, “Gecko-Inspired Climbing Behaviors on Vertical and Overhanging Surfaces,” IEEE International Conference on Rrobotics and Automation, Pasadena, CA, USA, pp. 1125-1131, May, 2008
[19] K. H. Low, Chunlin Zhou and Yu Zhong, “Gait Planning for Steady Swimming Control of Biomimetic Fish Robots,” Advanced Robotics, vol. 23, issue 7-8, pp. 805-829, 2009
[20] B.S.K.K. Ibrahim, Ahmed M.A.Zargoun, “Modelling and Control of SCARA Manipulator,” Procedia Computer Science, vol. 42, pp. 106 – 113, 2014
[21] 百貨公司機器接待員, Available from:
https://www.bbc.com/news/av/technology-32391075
[22] Juan Fasola and Maja J Mataric´, Fellow IEEE, “Using Socially Assistive Human–Robot Interaction to Motivate Physical Exercise for Older Adults,” Proceedings of the IEEE, vol. 100, issue 8, Aug. 2012
[23] 陳曼寧, “購物助手型機器人,” 國立台灣大學機械系工程研究所, 2013
[24] 吳宏義, “降雨強度對屋頂排水量影響之研究,” 中國科技大學建築研究所, 2013
[25] T. Fukuda, H. Hosokai, Y. Kondo, “Brachiation type of mobile robot,” Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments, Italy, June 1991
[26] Alex Kai-Yuan Lo, Yu-Huan Yang, Tsen-Chang Lin, Chen-Wen Chu, Pei-Chun Lin, “Model-Based Design and Evaluation of a Brachiating Monkey Robot with an Active Waist,” Applied Sciences, vol. 7, no. 9, Sep. 2017
[27] Timothy Bretl, “Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints: The Free-Climbing Robot Problem,” The International Journal of Robotics Research, vol. 25, no. 4, pp. 317-342, April 2006
[28] 徐士傑, “可橫向飛躍握枝仿生機器人設計與實作,” 國立台灣科技大學機械工程系, 2016
[29] 運動員的攀爬影片, Available from:
https://www.youtube.com/watch?v=xqYVXRuLc8U
[30] C. Balaguer, A. Gim´enez, J.M. Pastor, V.M. Padr´on, M. Abderrahim, “A climbing autonomous robot for inspection applications in 3D complex environments,” Robotica, vol. 18, issue 3, pp. 287-297, May 2000
[31] Taehun Kang, Hyungseok Kim, and Hyoukryeol Choi, “Realtime perception with infrared scanner for navigation of quadruped walking and climbing robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Japan, 2004
[32] Armin Hornung, Kai M. Wurm, Maren Bennewitz, “Humanoid Robot Localization in Complex Indoor Environments,” IROS, 2010
[33] Vo-Gia Loc, Se-goh Roh, Ig Mo Koo, Duc Trong Tran, Ho Moon Kim, Hyungpil Moon, Hyouk Ryeol Choi, “Sensing and gait planning of quadruped walking and climbing robot for traversing in complex environment,” Robotics and Autonomous Systems, vol. 58, issue 5, pp. 666-675, May 2010
[34] GP2Y0A41SK0F紅外線測距感測器, Available from:
https://www.pololu.com/file/0J713/GP2Y0A41SK0F.pdf
[35] SN74LS241N三態緩衝器, Available from:
http://robottini.altervista.org/dynamixel-ax-12a-and-arduino-how-to-use-the-serial-port?doing_wp_cron=1441128145.5107278823852539062500
[36] Savage Electronics團隊的函式庫, Available from:
http://austinlpalmer.com/Projects/Documentr/#/home
[37] F. Delcomyn, “Neural basis of rhythmic behavior in animals,” Science, vol. 210, no. 4469, pp. 492–498, 1980.
[38] J. G. Nicholls, A. R. Martin, B. G. Wallace, and P. A. Fuchs, From Neuron to Brain, 4th ed. Sunderland, MA, USA: Sinauer Associates, 2001.
[39] Junzhi Yu, Min Tan, Jian Chen, and Jianwei Zhang, “A survey on CPG-inspired control models and system implementation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, issue 3, March 2014
[40] A. Kamimura, H. Kurokawa, E. Yoshida, Member IEEE, “Automatic locomotion design and experiments for a Modular robotic system,” IEEE/ASME Transactions on Mechatronics, vol. 10, issue 3, pp. 314-325, June 2005
[41] Xiaoqi Li, Wei Wang, Jianqiang Yi, Senior Member, IEEE, “Gait Transition Based on CPG Modulation for Quadruped Locomotion,” IEEE International Conference on Advanced Intelligent Mechatronics (AIM), South Korea, July 2015
[42] Meng Cai, Wang Tianmiao, Guan Shengguo, Zhang Long, Wang Jing, Li Xiaohu, “Design and Analysis of Gecko-like Robot,” Chinese Journal of Mechanical Engineering, vol. 24, 2011
[43] Alessandro Crespi, Daisy Lachat, Ariane Pasquier, Auke Jan Ijspeert, “Controlling swimming and crawling in a fish robot using a central,” Autonomous Robots, vol. 25, issue 1–2, pp. 3–13, August 2008
[44] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, “The Kuramoto model: A simple paradigm for synchronization phenomena,” Rev. Mod. Phys., vol. 77, no. 1, pp. 137–185, 2005.
[45] Cristina P. Santos, Vítor Matos, “Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach,” Robotics and Autonomous Systems, vol. 59, issue 9, pp. 620-634, Sep. 2011
[46] Xiuli Zhang, Haojun Zheng, Lian feng Chen, “Gait transition for a quadrupedal robot by replacing the gait matrix of a central pattern generator model,” Advanced Robotics, vol. 20, issue 7, pp. 849-866, 2006
[47] M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control, Hoboken, New Jersey: John Wiley, 2006.

無法下載圖示 全文公開日期 2023/08/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE