簡易檢索 / 詳目顯示

研究生: 蘇淵明
Yuan - Ming Su
論文名稱: 探討奈米金粒子對類骨細胞行為的影響
The effects of gold nanoparticles on osteoblast-like cells' behaviors
指導教授: 何明樺
Ming-Hua Ho
口試委員: 戴 龑
Yian Tai
李忠興
Chung-Hsing Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 137
中文關鍵詞: 奈米金粒子類骨細胞蛋白質
外文關鍵詞: gold nanoparticles, osteoblast-like cells, protein
相關次數: 點閱:355下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究主要在探討奈米金粒子(gold nanoparticles, GNPs)的製程與其表面粗糙度(不等向性(Anisotropic)),對類骨細胞(人類牙齦纖維母細胞(Human gingival fibroblast, hGF)與老鼠骨瘤細胞(Rat osteogenic cell, UMR)生理行為表現之影響,其中A型與B型奈米金粒子以新式製程製備,溶劑為水相系統,迥異於過去奈米金粒子製程常用的化學溶劑系統。 實驗中亦以傳統製程製備的奈米金粒子(M型)作為對照組,沒添加奈米金粒子的細胞當作控制組。
由穿透式電子顯微鏡(Transmission Electron Microscope, TEM)的結果顯示,M型與A型的形狀一樣近似圓球,其粒徑亦相仿(約20 nm)。B型除了粗糙度較M、A兩型高外,粒徑也略大(約50-100 nm)。初步生物相容性的測試證實三個型號的奈米金粒子皆無細胞毒性,且以A、B兩新式奈米金粒子,具有較M型傳統製程奈米金粒子優越的生物相容性(biocompatibility)。
在短時間24小時內觀察細胞形態、細胞貼附量以及細胞面積,其結果發現奈米金粒子對細胞的貼附行為影響不大,量測細胞面積加上高低細胞密度的培養測試,可知M型和A型使細胞面積變小,B型新式奈米金系統則會讓細胞面積變大。
由細胞活性與增生實驗的結果發現,細胞增生的趨勢細胞活性的相似,都是M型和A型的值較高,其中以A型新式奈米金粒子的值較高,故推測細胞的活性越大,增生速率就越快。最後在骨分化的測試,可以發現B型新式奈米金粒子系統,其對分化的影響很大。
其研究目的期望可以增加奈米金粒子應用面,使奈米金粒子可以扮演細胞世界中一種環境生長因子,刺激其細胞的行為,且使其能應用在骨組織工程上,的並能在奈米材料的設計上(製程和粗糙度)和控制細胞行為中能有所貢獻。


In this research, the main purpose is the investigation of the effects of gold nanoparticles (GNPs) on behaviors of osteoblastic cells, including human gingival fibroblast cells (hGF) and rat osteosarcoma cells (UMR-106). The novel GNPs are prepared by using a novel process without any organic solvents (A and B types). Gold nanoparticles prepared by the commercial manufacturing process (M type) was are also used for the comparisons.
The results of TEM indicated that the shape and size of M and A types are similar. The B-type nanoparticles are with higher roughness and larger size, compaer with the other types. For the cells cultured without serum, A and B types are biocompatible while M type expresses the cytotoxicity. For the cells cultured with serum, A and M types significantly promote the cell activity, proliferation and early differentiation. On the other hand, B type is just biocompatible and ineffective, which may be resulted from the large size, high roughness, aggregation and low concentration of B-type GNPs in the culture medium. The effects of A and M type GNPs in this research would come from the protein adsorption on GNPs surfaces.
In conclusions, the present research reveals that the GNPs can enhance the activity, proliferation and differentiation of osteoblastic cells. Moreover, the GNPs prepared by using the novel process is more biocompatible than the convectional GNPs. As a result, the novel GNPs are with the excellent biocompatibility and the ability to promote activity, proliferation and differentiation of osteoblastic cells. The results in this study supported that the novel GNPs are highly potential in the biomedical applications.

摘要 I Abstract III 致 謝 V 目 錄 VII 圖目錄 XII 表目錄 XV 中英文對照表 XVI 第一章 序論 1 第二章 文獻回顧 2 2.1. 奈米科技 2 2.1.1. 奈米科技的簡介 2 2.1.2 奈米材料的基本定義 3 2.2. 奈米金粒子的特性、製備與應用 5 2.2.1. 奈米金粒子的特性 5 2.2.2 奈米金粒子的製備 6 2.2.3 奈米金粒子在生物醫學上的應用 7 2.3 細胞與骨組織工程 9 2.3.1. 胞外基質之組成與特性 9 2.3.2 細胞與胞外基質間的交互作用 13 2.3.3 骨骼 15 2.3.4 骨母細胞之生化行為表現 17 2.4 奈米金粒子與細胞作用之文獻回顧 20 2.4.1 奈米金粒子的生物相容性 20 2.4.2 奈米金粒子與細胞間的作用 23 2.4.3 奈米金粒子表面性質的影響 24 第三章 實驗材料與方法 27 3.1 實驗藥品 27 3.2 實驗儀器 29 3.3 實驗設計與操作 31 3.3.1 實驗設計 31 3.3.2 實驗操作 33 3.4 實驗奈米金粒子 34 3.5 細胞用細胞 35 3.5.1 細胞來源 35 3.5.2 細胞培養 36 3.5.3 冷凍保存 37 3.5.4 解凍培養 37 3.5.5 細胞計數 38 3.6 分析方法及其步驟 40 3.6.1 細胞貼附與細胞增生實驗 40 3.6.2 細胞活性測試 41 3.6.3 細胞蛋白質濃度測試實驗 43 3.6.4 鹼性磷酸(ALPase)定性染色 45 3.6.5 鹼性磷酸(ALPase)定量分析 46 3.6.6 細胞鈣化實驗 48 3.6.7 穿透式電子顯微鏡之生物樣品製備 52 第四章 結果與討論 54 4.1 不同製程的奈米金粒子之特性分析 54 4.1.1 奈米金粒子形狀分析 54 4.1.2 奈米金粒子的前處理程序 56 4.2 奈米金粒子與細胞間的作用 59 4.2.1 新式製程奈米金粒子的生物相容性測試 59 4.2.2 不同濃度奈米金粒子的細胞毒性測試 61 4.2.3 短時間與奈米金粒子培養下的細胞形態 64 4.2.4 奈米金粒子被細胞攝入的情形 67 4.3 奈米金粒子與蛋白質間的作用 72 4.3.1 培養系統中奈米金的狀態 72 4.3.2 奈米金粒子吸附BSA蛋白質的能力 75 4.3.3 奈米金粒子吸附牛血清蛋白的能力 77 4.4 奈米金粒子對細胞行為的影響 82 4.4.1 細胞貼附行為 82 4.4.2 細胞面積量測 85 4.4.3 高密度細胞系統之細胞貼附表現 88 4.4.4 細胞粒線體活性測試 90 4.4.5. 細胞增生行為 93 4.5 奈米金粒子對骨分化的影響 95 4.5.1 鹼性磷酸(ALPase)之定性染色 95 4.5.2 鹼性磷酸(ALPase)之定量分析 97 第五章 結論 100 附 錄 108 附錄A、ALPase 檢量線 108 附錄B、量測細胞數檢量線 109 附錄C、Image-J量測細胞面積 110 附錄D、BSA檢量線 113 附錄E、培養液的成分 114

Anselme K., Osteoblast adhesion on biomaterials, Biomaterials, 2000; 21: 667-681
Alberts X.X., Molecular biology of the cells, 2002, 4th ed, Garland Publishing
Atance J., Yost M.J., and Carver W., Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch, J. Cell. Physiol., 2004; 200: 377–386
Alberola A.P., Radler J.O., The defined presentation of nanoparticles to cells and their surface controlled uptake, Biomaterial, 2009;30:3766-3770
Boudreau N., Myers C., Bissell M.J., From laminin to lamin: regulation of tissue-specific gene expression by the ECM, Trends in Cell Biology, 1995; 5: 1- 4
Clark RAF., Lanigan J.M., Dellapelle P., Manseau E., Dvorak H.F., Colvin R.B., Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithalialization, J. Invest. Derma., 1982; 79: 264-269.
Chen Y., Flowers K., Calizo M., Bishnoi S.W., The role of protein binding in the poisoning of gold nanoparticle catalysts, Colloids Surf. B, 2010;76:241-247
Connor E.E., Mwamuka J., Anand G., Murphy C.J., Wyatt D.M., Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small, 2005;3:325-327
Chithrani B.D., Chan W.C.W., Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shape, Nano Lett., 2007;7:1542-1550
Chithrani B.D., Ghazani A.A., Chan W.C.C., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett., 2006;6:662-668
Chen J., Moore R., Xing J.Z., Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle, Nanotechnology, 2009;20:375101-375110
Chow G.M., Gonsalves K. E. (eds.), Nanotechnology, Molecularly designed materials, American Chemical Society, 1996:137-151
De M., You C.C., Srivastava S., Rotello M.V., Biomimetic interactions of proteins with functionalized nanoparticles:A Thermodynamic Study, J.AM.CHEM.SOC., 2007;129:10747-10753
Daniel M.C., Astruc,D., Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem.Rev., 2004;104:293-346
Elghanian R., Storohoff J.J., Mucic R.C., Letstinger R.L., Mirkin C.A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 1997;277:1078-1081
Frens G, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature:Phys. Sci., 1973;241:20-22
Fuente J.M. de la, Berry C.C., Riehle M.O., Curtis A.S.G., Nanoparticle targeting at cells, Langmuir, 2006;22:3286-3293
Franca A., Pelaz B., Moros M., Espinel C.S., Hernandez Andrea, Lopez C.F., Grazu V., Fuente J.M. de la, Santos I.P., Marzan L.M.L., Fernandez A.G., Small, 2010;6:89-95
Garca A.J., Vega M.D., and Boettiger D., Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation, Mol. Cell. Biol., 1999; 10: 785-798
Grinnel F., Billingham R.E., Burgess L., Distribution of fibronectin during wound healing in vivo, J. Invest. Derma., 1981; 76: 181-189.
Grinnel F., Wound repair, keratinocyte activation and integrin modulation, J. Cell Sci., 1992 ; 101: 1-5.
Hay E.D., Interaction between the cell surface and extracellular matrix in corneal development: Cell and Tissue Interactions, Ed. J.W. Lash and M.M. Burger, New York: Raven Press, 1977, 115-137
Huang X., Teng X., Chen D., Tang F., He J., The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function, Biomaterials, 2010;31:438-448
Ingber D.E., Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis, J. Cell. Biochem. , 1991 ; 47: 236-241.
Komori T., Kishimoto T., Cbfa1 in bone development , Curr. Opin. Genetics Dev., 1998;8 : 494 – 499.
Kinsella M.G., Irvin C., Reidy M.A., Wight T.N., Removal of heparin sulfate by heparinase treatment inhibits FGF-2-dependent smooth muscle cell proliferation in injured rat carotid arteries, Atherosclerosis, 2004; 175: 51-57.
Kong T., Zeng J., Wang X., Yang X., Yang J., McQuarrie S., McEwan A., Roa W., Chen J., Xing J.Z., Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles, Small, 2008;9:1537-1543
Kittler S., Greulich C., Gebauer J.S., Diendorf J., Treuel L., Ruiz L., Gonzalez-Calbet J.M., Vallet-Regi M., Zellner R., Koller M., Epple M., J.Mater.Chem., 2010;20:512-518
Lewinski N., Colvin V., Drezek R., Cytotoxicity of Nanoparticles, Small, 2007;4:26-49
Lynch I., Dawson K.A., Protein-nanoparticle interactions, Nanotoday, 2008;3:1-2
Lin Y.L., Jen J.C., Hsu S.H., Chiu I.M., Sciatic nerve repair by microgrooved nerve conduits made of chitosan-gold nanoparticles, Surg. Neural., 2008;70:S1:9-S1:18
Lacerda S.H., Park J.J., Meuse C., Pristinski D., Becker M.L., Karim A., Douglas J.F., Interaction of gold nanoparticles with common human blood proteins, ACSNANO, 2010;4:365-379
Menko A.S., and Boettiger D., Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation, Cell, 1987; 51: 51-57.
Mutsaers S.E., Bishop J.E., McGrouther G., Laurent G.J., Mechanisms of tissue repair: from wound healing to fibrosis., Int. J. Biochem. Cell Biol., 1997 , 29 : 5-17.
Murphy C.J., Gole A.M., Stone J.W., SISCO P.N., Alkilany A.M., Goldsmith E.C., Baxter S.C., Gold nanoparticles in biology:Beyond Toxicity to cellular imaging, Acc.Chem.Res., 2008;41:1721-1730
Marie-Eve A.T., Kimberly H.M., Gold nanoparticle-cytochrome c complexes:the effect of nanoparticle ligand charge on protein structure, Langmuir, 2005;21:12080-12084
Mirkin C.A., Letstinger R.L., Mucic R.C., Storohoff J.J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 1996;382:607-609
Maxwell D. J., Taylor J. R., Nie S., Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules, J. AM. CHEM. SOC., 2002;124:9606
Nam J.M., Thaxton C.S., Mirkin C.A., Nanoparticle-based bio-bar codes for the ultrasensitive detection of protein, Science, 2003;301:1884-1886
Ohki K. and Kohashi O., Laminin promotes proliferation of bone marrow-derived macrophages, Cell Struct. Funct., 1994 ; 19: 63-71.
Pan Y., Neuss S., Leiferi A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W.,Size-dependent cytotoxicity of gold nanoparticles, Small, 2007;3:1941-1949
Roth J., The colloidal gold marker system for light and electron microscopic cytochemistry, 217 - 284. in: G. R. Bullock, P. Petrusz (eds.) Techniques in immunocyto- chemistry, Vol. , Academic Press, New York, USA (1983 ).
Runyan R.B., Maxwell G.D., Shur B.D., Evidence for a novel enzymatic mechanism of neural crest cell migration on extracellular glycoconjugate matrices, J. of Cell Biol., 1986; 102: 432-441.
Raouf A., Seth A., Discovery of osteoblast-associated genes using cDNA microarrays. Bone , 2002; 30: 463 – 471.
Roa W., Zhang X., Guo L., Shaw A., Hu X., Xiong Y., Gulavita S., Patel S., Sun X., Sperling R.A., Gil P.R., Zhang F., Zanella M., Parak W.J., Biological applications of gold nanoparticles, Chem. Soc. Rev., 2008;37:1896-1908
Sharma J., Tai Y., Imae T., Biomodulation approach for gold nanoparticles:synthesis of anisotropic to luminescent particles, Chem. Asian J., 2010;5:70-73
Stein G.S., Lian J.B.,Transcriptional control of osteoblast growth and differentiation , Phys. Rev. , 1996 ; 76 : 593-629.
Toda K.I., Grinnell F., Activation of fibronectin receptor function in relation to other ligand-receptor interactions, J. Invest. Dermatol., 1987; 88: 412-417.
Taipale J. , Keski-Oja J., Growth factors in the extracellular matrix, FASEB J., 1997; 11: 51-59.
Turkevitch J., Stevenson P.C., Hillier J., Nucleation and Growth Process in the Synthesis of Colloiadal Gold, Faraday Soc, 1951;11:55-75
Vaday G.G., Franitza S., Schor H., Hecht I., Brill A., Cahalon L., Hershkoviz R., Lider O., Combinatorial signals by inflammatory cytokines and chemokines mediate leukocyte interactions with extracellular matrix, J. Leukocyte Biol., 2001; 69: 885 – 892.
Verma A., Stellacci F., Effect of surface properties on nanoparticle-cell interactions, Small, 2010;6:12-21
Wang J., Duan T., Sun L., Liu D., Wang Z., Functional gold nanoparticles for studying the interaction of lectin with glycosyl complex on living cellular surfaces, Anal. Biochem., 2009;392:77-82
Werb Z., Tremble P.M., Behrendtsen O., Crowley E., Damsky C.H., Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell Biol., 1989 ; 109: 877-889.
Yen H.J., Hsu S.H., Tsai C.L., Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes, Small, 2009;5:1553-1561
陳文章、徐俊旭、呂博文、李坤易、林志鴻,真空科技,十九卷一期
馬振基,《奈米材料科技原理與應用》,全華科技圖書,2003年

QR CODE