簡易檢索 / 詳目顯示

研究生: 黃鵬仁
Peng-Jen Huang
論文名稱: Optical Characterization of II-VI Wide Band Gap Semiconductor Materials
Optical Characterization of II-VI Wide Band Gap Semiconductor Materials
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 孫澄源
none
陳永芳
none
何清華
Ching-Hwa Ho
程光蛟
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 161
中文關鍵詞: II-VI族寬能隙合金化合物半導體表面光電壓光譜光激發螢光光譜無接點電場調制反射光子調制反射量子點
外文關鍵詞: II-VI Wide Band Gap Semiconductor, SPS, PL, CER, PR, quantum-dot
相關次數: 點閱:288下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文是利用表面光電壓光譜 (surface photovoltage spectroscopy, SPS) 、光激發螢光光譜 (photoluminescence, PL) 、無接點電場調制反射 (contactless electroreflectance, CER) 以及光子調制反射 (photoreflectance, PR) 量測技術研究II-VI族寬能隙合金化合物半導體材料特性,其中包括利用高壓布里奇曼法 (high pressure Bridgman method) 成長而成的,三元 (CdBeSe, CgMgSe, ZnBeSe, ZnMgSe) 和四元 (ZnBeMgSe) II-VI族化合物半導體之單晶以及利用分子束磊晶法 (Molecular beam epitaxy, MBE) 成長而成的,不同鈹 (berylium, Be)含量的CdBeSe成長於InP基板上等薄膜樣品。
在室溫下,利用SPS量測技術,量測以高壓布里奇曼法成長而成的化合物半導體之單晶的SPS調制光譜,其可觀察到當樣品未經處理時,則會量測到樣品上缺陷相關 (defect-related) 之訊號,而無法量測到真正的能隙躍遷訊號;但當經過約三小時的機械磨光 (mechanical polished) 以及化學蝕刻 (chemical etched) 後,即可去除掉缺陷相關之訊號,而得到真實地能隙躍遷訊號。故我們可以利用在室溫下的SPS調制光譜量測技術,來檢查樣品的表面是否有處理完善。此篇論文中所有的化合物半導體單晶樣品,在做光學量測之前,皆有經過機械磨光以及化學蝕刻的處理。
針對本論文中所探討,含鈹、鎂II-VI族寬能隙半導體之單晶與薄膜樣品,做溫度變化之PL、CER 以及PR光譜的量測,其量測之結果作勞倫茲線形 (Lorentzian lineshape) 的吻合與分析。其單晶之樣品,由PL於低溫 (15K)下之譜線中,可觀察到三個躍遷訊號,由高能量處往低能量處依次為能帶邊際激子譜線 (band-edge exciton line, X) 躍遷訊號、施體-受體對 (donor-acceptor pairs, DAP) 躍遷訊號及深層能階 (deep level, DL) 躍遷訊號。而CER 及PR光譜量測結果中,可決定其訊號來源分別為能隙附近之帶間躍遷 (band-edge transition) 以及自旋軌域分裂 (spin-orbital splitting) ,並且利用此些結果探討溫度對訊號躍遷之影響。此外,由展寬參數 (broadening parameters)中可討論單晶與薄膜之樣品其GLO和一些II-VI族半導體的比較。
此外,我們利用室溫下CER量測的技術,來探討分子束磊晶法成長而成的,CdSe/ZnBeSe與CdSe/ZnSe 成長於GaAs (001) 基板上的兩量子點結構之樣品。從量測的譜線中,我們可以觀察到於CdSe/ZnBeSe樣品中,硒化鎘 (CdSe)量子點的能量躍遷訊號比CdSe/ZnSe來得高 (blue shift, 藍移),且其線形也比較窄 (narrower)。此量子點能量躍遷訊號之所以會藍移,是由於加入鈹後,量子點的結構變小和其有較大的障壁能量 (barrier energy) ,再者由較小的展寬參數可顯示出在ZnBeSe樣品下的量子點分佈比較均勻。


In this thesis, the optical properties of Be/Mg contained II-VI wide band gap alloys semiconductor materials of ternary (CdBeSe, CdMgSe, ZnBeSe, and ZnMgSe) and quaternary (ZnBeMgSe) mixed crystals grown from the melt by the high pressure Bridgman method, and CdBeSe epilayers grown on InP substrates by molecular beam epitaxy (MBE) are studied using the techniques of surface photovoltage spectroscopy (SPS), photoluminescence (PL), contactless electroreflectance (CER) and photoreflectance (PR).
Room-temperature SPS has been used as a diagnostic technique for checking the surface condition of the bulk material samples. For mechanically polished samples, the surface photovoltage spectrum at room temperature recorded a below band edge broad feature which is most likely related to the surface states induced by mechanical defect. This feature can be eliminated via mechanical polishing and followed by chemical etching, and hence only exciton line was observed for the damage-removed sample.
Typical PL spectrum at low temperature consists of an exciton line, an edge emission feature due to recombination of donor-acceptor pairs, and a broad band related to recombination through deep level defects. Interband transitions, originating from the band edge, including crystal-field splitting (wurtzite-type sample) and spin-orbital splitting critical points of the sample, have been observed in the CER/PR spectra. The near band-edge interband excitonic transition energies of mixed crystal and thin films samples are determined via lineshape fits to the CER and PR spectra. The peak positions of the excitonic emission lines in the PL spectra correspond quite well to the energies of the fundamental transitions determined from electromodulation data. The parameters that describe the temperature dependence of the interband transition energy and broadening parameters of the excitonic features, and the broadening function of the band edge exciton are evaluated and discussed.
In addition, CER has been used to investigate the capped CdSe quantum-dot (QD) structures grown on ZnSe and ZnBeSe by MBE on GaAs (001) substrates at room temperature. The features originating from the QDs transitions for the CdSe QDs sandwiched by ZnBeSe show blue shifts and narrower lineshape as compared to those grown on ZnSe. The blue shifts of the QD transitions are related to the smaller QD size and the slightly higher barrier energy due to the presence of Be, while the smaller broadening parameters indicate the higher uniformity of the QD size distribution of the ZnBeSe sample.

Abstract-----------------------------------------------------------------------Ⅰ Acknowledgement-----------------------------------------------------------------------V Table of Contents-----------------------------------------------------------------------VI Acronyms-----------------------------------------------------------------------VIII Symbols-----------------------------------------------------------------------IX List of Figures-----------------------------------------------------------------------XI List of Tables-----------------------------------------------------------------------XVI Chapter 1Introduction--------------------------------------------------------1 1.1Introduction--------------------------------------------------------1 1.2Literature review--------------------------------------------------2 Chapter 2Experimental Details----------------------------------------------11 2.1Samples preparation method-------------------------------------11 2.1.1Mixed crystal samples--------------------------------------------12 2.1.2Thin films samples------------------------------------------------15 2.1.3Quantum dots samples--------------------------------------------16 2.2Measurements Setup----------------------------------------------18 2.2.1SPS measurement system setup---------------------------------18 2.2.2PL measurement system setup----------------------------------25 2.2.3modulation spectroscopy-----------------------------------------27 2.2.3.1CER measurement system setup--------------------------------30 2.2.3.2PR measurement system setup----------------------------------32 2.2.4Temperature-dependence measurement system setup--------35 Chapter 3Optical Characterization of a Cd0.85Mg0.15Se mixed crystal-38 3.1Introduction--------------------------------------------------------38 3.2Results and discussion--------------------------------------------40 3.3Summary-----------------------------------------------------------44 Chapter 4Photoluminescence and contactless electroreflectance characterization of Cd1 xBexSe alloys-------------------------- 54 4.1Introduction--------------------------------------------------------54 4.2Results and discussion--------------------------------------------56 4.3Summary-----------------------------------------------------------77 Chapter 5Photoluminescence and electromodulation spectroscopy characterization of Zn0.96Be0.04Se and Zn0.93Mg0.07Se mixed crystals-------------------------------------------------------------- 78 5.1Introduction--------------------------------------------------------78 5.2Results and discussion--------------------------------------------80 5.3Summary-----------------------------------------------------------97 Chapter 6Photoluminescence and electromodulation spectroscopy characterization of a Zn0.81Be0.04Mg0.15Se mixed crystal---- 99 6.1Introduction--------------------------------------------------------99 6.2Results and discussion--------------------------------------------101 6.3Summary-----------------------------------------------------------113 Chapter 7Contactless electroreflectance study of CdSe/ZnBeSe quantum dots grown by molecular-beam epitaxy------------- 114 7.1Introduction--------------------------------------------------------114 7.2Results and discussion--------------------------------------------116 7.3Summary-----------------------------------------------------------125 Chapter 8Conclusions--------------------------------------------------------129 References-----------------------------------------------------------------------127 Autobiography-----------------------------------------------------------------------143 Publications-----------------------------------------------------------------------144 Conference-----------------------------------------------------------------------145

[1]Lee, H. C., A. Tomoki, K. Nobumasa, A. Masahiro, M. Watanabe, F. Yusuke, H. Kasada, and A. Koshi, “Efficient and Long-Lived Green Light-Emitting Diodes Based on ZnSSe:Te Active Layer”, Jpn. J. Appl. Phys., Vol.41, pp.1359-1364(1979).

[2]Klude, M., G. Alexe, C. Kruse, T. Passow, H. Heinke, and D. Hommel, “500-560 nm Laser Emission from Quaternary CdZnSSe Quantum Wells”, Phys. Stat. Sol. (b), Vol.229, pp.935-942(2002).

[3]Kruse, C., S. M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, “Green Monolithic II-VI Vertical-Cavity Surface-Emitting Laser Operating at Room Temperature”, Phys. Stat. Sol. (b), Vol.241, pp.731-738(2004).

[4]Gust, A. , C. Kruse, M. Klude, E. Roventa, R. Kröger, K. Sebald, H. Lohmeyer, B. Brendemühl, J. Gutowski, and D. Hommel, “ZnSe-Based Laser Diodes: New Approaches”, Phys. Stat. Sol. (b), Vol.2, pp.1098-1105(2005).

[5]Klude, M., T. Passow, H. Heinke, and D. Hommel, “Electro-Optical Characterization of CdSe Quantum Dot Laser Diodes”, Phys. Stat. Sol. (b), Vol.229, pp.1029-1032(2002).

[6]Lohmeyer, H., K. Sebald, C. Kruse, R. Kröger, J. Gutowski, and D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, “Confined Optical Modes in Monolithic II-VI Pillar Microcavities”, Appl. Phys. Lett., Vol.88, pp.511-513(2006).

[7]Roventa, E., R. Kröger, M. Klude, A. Ueta, G. Alexe, P. Ryder, and D. Hommel, “Microstructural Study of Quantum Well degradation in ZnSe-based laser diodes”, Phys. Stat. Sol. (c), Vol.1, pp.1005-1009(2004).

[8]Ueta, A., M. Klude, A. Gust, S. Figge, K. Otte, and D. Hommel, “Study of ZnSe-based green-yellow ridge waveguide laser diodes toward long lifetime operation”, Phys. Stat. Sol. (c), Vol.1, pp.1014-1017(2004).

[9]Ueta, A., and D. Hommel, “New concept for ZnTe-based homoepitaxial light-emitting diodes grown by molecular beam epitaxy”, Phys. Stat. Sol. (a), Vol.192, pp.177-182(2002).

[10]Wu, B. J., G. M. Haugen, J. M. DePuydt, L. H. Kuo, and L. Salamanca-Riba, “Molecular Beam Epitaxy of Low Defect Density ( <= 1 × 104 cm - 2) ZnSSe on GaAs”, Appl. Phys. Lett., Vol.68, pp.2828-2830(1996).

[11]Kröger, R., E. Roventa, A. Gust, A. Ueta, M. Klude, D. Hommel, and P. Ryder, “Defect characterization of electrically degraded ZnSe based laser diodes”, Phys. Stat. Sol. (a), Vol.201, pp.28-30(2004).

[12]Haugen, G. M., S. Guha, H. Cheng, J. M. DePuydt, M. A. Haase, G. E. Höfler, J. Qiu, and B. J. Wu, “Photodegradation of CdxZn1–xSe quantum wells”, Appl. Phys. Lett., Vol.66, pp.358-360(1995).

[13]Ueta, A., and D. Hommel, “Novel ZnTe-based green light emitters grown on ZnTe substrates”, Phys. Stat. Sol. (c), Vol.1, pp.1010-1013(2004).

[14]Wu, B. J., J. M. DePuydt, G. M. Haugen, and M. A. Haase, “Short period superlattice Il-VI blue light emitting diodes”, Electron. Lett., Vol. 31, pp.1015-1016(1995)

[15]Nakano, K., and A. Ishibashi, “Degradation in II-VI laser diodes”, Mater. Sci. Forum, Vol.258-263, pp.1329-1334(1997).

[16]Kolodziejski, L. A., ¬R. L. Gunshor, and ¬A. V. Nurmikko, “Wide-Bandgap II-VI Heterostructures for Blue/Green Optical Sources: Key Materials Issues”, Annual Review of Materials Science, Vol.25, pp.711-755(1995).

[17]Buijs, M., K. Shahzad, S. Flamholtz, K. Haberern, and J. Gaines, “Carrier leakage in blue-green II–VI semiconductor lasers”, Appl. Phys. Lett., Vol.67, pp.1987-1989(1995).

[18]Haase, M. A., J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-Green Laser Diodes”, Appl. Phys. Lett., Vol.59, pp.1272-1274(1991).

[19]Jeon, H., J. Ding, W. Patterson, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, and R. L. Gunshor, “Blue-Green Injection Laser Diodes in (Zn,Cd)Se/ZnSe Quantum Wells”, Appl. Phys. Lett., Vol.59, pp.3619-3621(1991).

[20]Fischer, F., G. Landwehr, Th. Litz, H. J. Lugauer, U. Zehnder, and Th. Gerhard, “II-VI Light-Emitting Devices Based on Beryllium Chalcogenides”, J. Cryst. Growth, Vol.175/176, pp.532-540(1997).

[21]Waag, A. , F. Fischer, J. Laubender, H. J. Lugauer, U. Lunz, Th. Litz, U. Zehnder, W. Ossau, T. Gerhard, M. Moller, and G. Landwehr, “Molecular-Beam Epitaxy of Beryllium-Chalcogenide-Based Thin Films and Quantum-Wall Structures”, J. Appl. Phys., Vol.80, pp.792-796(1996).

[22]Vigué, F., E. Tournié, and J. -P. Faurie, “Zn(Mg)BeSe-Base P-I-N Photodiode Operating in the Blue-Violet and Near-Ultraviolet Spectral Range”, Appl. Phys. Lett., Vol.76, pp.242-244(2000).

[23]Maksimov, O., S. P. Guo, and M. C. Tamargo, “Be-Chalcogenide Alloys for Improved R-G-B LEDs: BexZnyCd1-x-ySe on InP”, Phys. Stat. Sol. (b), Vol.229, pp.1005-1009(2002).

[24]Ng, T. B., C. C. Chu, J. Han, G. C. Hua, R. L. Gunshor, E. Ho, E. L. Warlick, L. A. Kolodziejski, and Z. H. Zheng, “Reducton of Extended Defects in II-VI Blue-Green Laser Diodes”, J. Cryst. Growth, Vol.214/215, pp.100-103(2000).

[25]Baude, P. F., S. Guha, M. A. Haase, G. Meis-Haugen, K. K. Law, T. J. Miller, M. Buijs, K. Haberern, T. Marshall, M. Pashley, and J. Pettruzello, “Advances in blue-green laser diodes”, IEEE, Vol.2, pp.131-133(1995).

[26]Waag, A., F. Fischer, K. Schüll, T. Baron, H.-J. Lugauer, Th. Litz, U. Zehnder, W. Ossau, T. Gerhard, M. Keim, G. Reuscher, and G. Landwehr, “Laser Diodes Based on Beryllium-Chalcogenides”, Appl. Phys. Lett., Vol.70, pp.280-282(1997).

[27]Zhang, J. Y., D. Z. Shen, X. W. Fan, B. J. Yang, and Z. H. Zheng, “ZnBeSe Epitaxy Layers Grown by Photo-Assisted Metalorganic Chemical Vapor Deposition”, J. Cryst. Growth, Vol.214/215, pp.100-103(2000).

[28]Muńoz, A., P. RodrÍguez, and A. Mujica, “Electronic and Structural Properties of BeSe, BeTe, and BeS: Comparison Between Ab-Initio Theory and Experiments”, Phys. Stat. Sol. (b), Vol.198, pp.439-446(1996).

[29]Waag, A., F. Fischer, H. J. Lugauer, T. Litzm, J. Laubender, U. Lunz, U. Zehnder, W. Ossau, T. Gerhardt, M. Möller, and G. Landwehr, “Molecular-Beam Epitaxy of Beryllium-Chalcogenide-Based Thin Films and Quantum-Well Structures”, J. Appl. Phys., Vol.80, pp.792-796(1996).

[30]Hsieh, C. H., Y. S. Huang, C. H. Ho, K. K Tiong, M. MuŃoz, O. Maksimov, and M. C. Tamargo, “Temperature Dependence of the Band-Edge Transitions of ZnCdBeSe”, Jpn. J. Appl. Phys., Vol.43, pp.459-466(2004).

[31]Wronkowska, A. A., F. Firszt, H. Arwin, A. Wronkowski, M. Wakula, K. Strzalkowski, and W. Paszkowicz, “Characterisation of Cd1–x–yBexZnySe crystals by spectroscopic ellipsometry and luminescence”, Phys. Stat. Sol. (c), Vol.3, pp.1193-1196(2006).

[32]Liu, Y. T., P. Sitarek, Y. S. Huang, F. Firszt, S. Łęgowski, H. Męczyńska, and A. Marasek, W. Paszkowicz, and K. K. Tiong, “Temperature dependence of the edge excitonic transitions of the wurtzite Cd1–x–yBexZnySe crystals”, J. Appl. Phys., Vol.98, pp.083519-1〜083519-7(2005).

[33]Maksimov, O. S. P. Guo, and M. C. Tamargo, “Growth and characterization of BeCdSe alloys and BeCdSe/ZnCdMgSe quantum wells on InP substrates”, Appl. Phys. Lett., Vol.78, pp.2473-2475(2001).

[34]Maksimov, O., S. P. Guo, L. Leng, M. C. Tamargo, F. C. Perris, and K. J. Furdyna, “Distributed Bragg reflectors based on (Zn,Cd,Mg)Se for use in the visiblespectral range”, J. Appl. Phys., Vol.89, pp.2202-2207(2001).

[35]Cho, M. W., J. H. Chang, D. M. Bagnall, K. W. Koh, S. Saeki, K. T. Park, Z. Zhu, K. Hiraga, and T. Yao, “Growth and characterization of beryllium-based II–VI compounds”, J. Appl. Phys., Vol.85, pp.512-517(1999).

[36]Jobst, B., D. Hommel, U. Lunz, T. Gerhard, and G. Landwehr, “E0 band-gap energy and lattice constant of ternary Zn1–xMgxSe as functions of composition”, Appl. Phys. Lett., Vol.78, pp.97-99(1996).

[37]Ivanov, S. V., V. A. Kaygorodov, S. V. Sorokin, B. Ya. Meltser, V. A. Solov'ev, Ya. V. Terent'ev, O. G. Lyublinskaya, K. D. Moiseev, E. A. Grebenshchikova, M. P. Mikhailova, A. A. Toropov, Yu. P. Yakovlev, P. S. Kop'ev, and Zh. I. Alferov, “A 2.78-µm laser diode based on hybrid AlGaAsSb/InAs/CdMgSe double heterostructure grown by molecular-beam epitaxy”, Appl. Phys. Lett., Vol.82, pp.3782-3784(2003).

[38]Terent'ev, Ya. V., V. A. Kaygorodov, V. A. Solov'ev, B. Ya. Mel'tser, A. N. Semenov, O. G. Lublinskaya, S. V. Sorokin, I. V. Sedova, S. V. Ivanov, and P. S. Kop'ev, “Novel mid-IR laser based on hybrid AlGaAsSb/InAs/CdMgSe heterostructure”, Physica E, Vol. 20, pp.475-478(2004).

[39]Ivanov, S. V., O. G. Lyublinskaya, Yu. B. Vasilyev, V. A. Kaygorodov, S. V. Sorokin, I. V. Sedova, V. A. Solov'ev, B. Ya. Meltser, A. A. Sitnikova, T. V. L'vova, V. L. Berkovits, A. A. Toropov, and P. S. Kop'ev, “Asymmetric AlAsSb/InAs/CdMgSe quantum wells grown by molecular-beam epitaxy”, Appl. Phys. Lett., Vol.84, pp.4777-4779(2004).

[40]Taniguchi, S., T. Hino, S. Itoh, K. Nakano, N. Nakano, A. Ishibashi, and M. Ikeda, “100h II-VI blue-green laser diode”, Electron. Lett., Vol.32, pp.552-553(1996).

[41]Ikeda, M., A. Ishibashi, and Y. Mori, “Molecular beam epitaxial growth of ZnMgSSe and its application to blue and green laser diodes”, J. Vac. Sci. Technol. A, Vol.13, pp.683-689(1995).

[42]Klude, M., T. Passow, R. Kroger, and D. Hommerl, “Electrically pumped lasing from CdSe quantum dots”, Electron. Lett., vol.37, pp.1119-1120(2001).

[43]Klude, M., and D. Hommel, “560-nm-continuous wave laser emission from ZnSe-based laser diodes on GaAs”, Appl. Phys. Lett., Vol.79, pp.2523-2525 (2001).

[44]Vigue, F., E. Tournie, and J. P. Faurie, “Evaluation of the potential of ZnSe and Zn(Mg)BeSe compounds forultraviolet photodetection”, IEEE. J. Quantum Electronics, Vol.37, pp.1146-1152(2001).

[45]Wang, J. F., A. Omino, and M. Isshiki, “Growth and conductive type control of ZnSe single crystals by vertical Bridgman method”, J. Cryst. Growth, Vol.229, pp.69-73(2001).

[46]Kirstaedter, N., O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers”, Appl. Phys. Lett., vol. 69, pp.1226-1231(1996).

[47]Ledentsov, N. N., V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Böhrer, O. Schmidt, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, S. V. Zaitsev, N. Yu. Gordeev, Zh. I. Alferov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U. Go¨sele, and J. Heydenreich, “Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth”, Phys. Rev. B, Vol.54, pp.8743-8750(1996).

[48]Asada, M., Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers”, IEEE. J. Quantum Electron., Vol.22, pp.1915-1921(1986).

[49]Guo, S. P., X. Zhou, O. Maksimov, M. C. Tamargo, C. Chi., A. Couzis, C.
Maldarelli, I. L. Kuskovsky, and G. F. Newmark, “Effects of Be on the II–VI/GaAs interface and on CdSe quantum dot formation”, J. Vac. Sci. Technol. B, Vol.19, pp.1635-1639(2001).

[50]Madhukar, A., Q. Xie, P. Chen, and A. Konkar, “Nature of strained InAs three-dimensional island formation and distribution on GaAs(100)”, Appl. Phys. Lett., Vol.64, pp.2727-2729(1994).

[51]Kurtenbach, A., K. Eberl, and T. Shitara, “Nanoscale InP islands embedded in InGaP”, Appl. Phys. Lett., Vol.66, pp.361-363(1995).

[52]Hatami, F., N. N. Ledentsov, M. Grundmann, J. Bo¨hrer, F. Heinrichsdorff,
M. Beer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Gösele, J. Heydenreich,
U. Richter, S. V. Ivanov, B. Ya. Meltser, P. S. Kop’ev, and Zh. I. Alferov, “Radiative recombination in type-II GaSb/GaAs quantum dots”, Appl. Phys. Lett., Vol.67, pp.656-658(1995).

[53]Zhou, X., M. Munoz, M. C. Tamargo, and Y. C. Chen, “Optically pumped laser characteristics of blue Znx'Cdy'Mg1-x'-y'Se/ZnxCdyMg1-x-ySe single quantum well lasers grown on InP”, J. Appl. Phys., vol.95, pp.7-10(2004).

[54]Xin, S. H., P. D. Wang, Aie Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna “Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy”, Appl. Phys. Lett., vol.69, pp.3884-3886(1996).

[55]Ivanov, S. V., A. A. Toropov, T. V. Shubina, S. V. Sorokin, A. V. Lebedev, I. V. Sedova, P. S. Kop’ev, G. R. Pozina, J. P. Bergman, and B. Monemar, “Growth and excitonic properties of single fractional monolayer CdSe/ZnSe structures”, J. Appl. Phys., vol.83, pp.3168-3171(1998).

[56]Schmidt, K. H., G. Medeiros-Ribeiro, M. Oestreich, and P. M. Petroff, “Carrier relaxation and electronic structure in InAs self-assembled quantum dots”, Phys. Rev. B, vol.54, pp.11346-11353(1996).

[57]Schikora, D., S. Schwedhelm, D. J. As, K. Lischka, D. Litvinov, A. Rosenauer, D. Gerthsen, M. Strassburg, A. Hoffmann, and D. Bimberg, “Investigations on the Stranski–Krastanow growth of CdSe quantum dots”, Appl. Phys. Lett., vol.76, pp.418-420(2000).

[58]H. Kirmse, R. Schneider, M. Rabe, W. Neumann, and F. Henneberger, “Transmission electron microscopy investigation of structural properties of self-assembled CdSe/ZnSe quantum dots”, Appl. Phys. Lett., vol.72, pp. 1329-1331(1998).

[59]Firszt, F., S. Łęgowski, H. Męczyńska, J. Szatkowski, W. Paszkowicz, and K. Godwod, “Growth and Characterisation of Zn1−xBexSe Mixed Crystals”, J. Cryst. Growth, Vol.184/185, pp.1335-1337(2000)

[60]Firszt, F., A. A. Wronkowska, A. Wronkowski, S. Łęgowski, A. Marasek, H. Męczyńska, M. Pawlak, W. Paszkowicz, K. Strzałkowski, and A. J. Zakrzewski, “Growth and Optical Characterization of Cd1-xBexSe and Cd1-xMgxSe Crystals”, Cryst. Res. Technol., Vol.40, pp.386-394(2005).

[61]Firszt, F., S. Łęgowski, H. Męczyńska, J. Szatkowski, A. Banasiak, W. Paszkowicz, U. Falke, S. Schultze, and M. Hietschold, “Growth and Characterization of Bulk Zn1−xBexSe, Zn1−x-yMgxBeySe and Zn1−xBexTe Crystals”, J. Cryst. Growth, Vol.214/215, pp.880-884(2000)
[62]Firszt, F., S. Łęgowski, H. Męczyńska, J. Szatkowski, W. Paszkowicz, and M. Marczak, “Growth and Characterisation of Zn1−xMgxSe Mixed Crystals”, J. Cryst. Growth, Vol.184/185, pp.1053-1056(1998).

[63]Huang, Y. S., L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati and P. Newman, “Surface Photovoltage Spectroscopy, Photoreflectance, and Reflectivity Characterization of an InGaAs/GaAs/GaAlAs Vertical-Cavity Surface-Emitting laser”, Appl. Phys. Lett., Vol.77, pp1874-1878(2000).

[64]Kronik, L., and Y. Shapira, “Surface Photovoltage Phenomena: Theory, Experiment, and Applications”, Surf. Sci. Rep., Vol.37, pp.1-206(1999).

[65]Marshak, A. H., “Modeling Semiconductor Devices with Position-Dependent Material Parameters”, IEEE Trans. Electron. Dev., Vol.36, pp.1764-1772(1989).

[66]Fefer, E., L. Kronik, M. Leibovitch, Y. Shapira, and W. Riedl, “In-Situ Moniting of Surface Chemistry and Charge Transfer at Semiconductor Surface”, Appl. Surf. Sci., Vol.104/105, pp.61-72(1996).

[67]Gal, D., Y. Mastai, G. Hodes, and L. Kronik, “Band Gap Determination of Semiconductor Powders via Surface Photovoltage Spectroscopy”, J. Appl. Phys., Vol.86, pp.5573-5577(1999).

[68]Leibovitch, M., L. Kronik, E. Fefer, L. Bustein,V. Korobov, Y. Shapira, “Surface Photovoltage Spectroscopy of Thin Films”, J. Appl. Phys., Vol.79, pp.8549-8556(1996).

[69]Balestra, C. L., J. Lagowski, and H, C, Gatos, “Determination of Surface State Energy Position by Surface Photovoltage Spectroscopy: Cds”, Surf. Sci., Vol.26, pp.317-320(1971).

[70]Aigouy, L., F. H. Pollak, J. Petruzzelo, and K. Shahzad, “Observation of Excitonic Features in ZnSe/ZnMgSSe Multiple Quantum Wells by Normalized Kelvin Probe Spectroscopy at Low Temperatures”, Solid State Commun., Vol.102, pp.877-882(1997).

[71]Lagowski, J., “Semiconductor Surface Spectroscopies: The Early Years”, Surf. Scie., Vol.299/300, pp.92-101(1994).

[72]Cardona, M., Modulation Spectroscopy, Academic, New York, (1969).

[73]Hamakawa, Y., and T. Nishino, In Optical properties of solids: New Developments, North-Holland, Amsterdam, pp.255(1970).

[74]Pollak, F. H., “Modulation Spectroscopy of Semiconductors and Semiconductor Microstructures”, in Handbook on Semiconductors, Vol.2, ed. M. Balkanski, North-Holland, New York, pp.527-635(1969).

[75]Pollak, F. H., and H. Shen, “Modulation Spectroscopy of Semiconductors: Bulk/Thin Film, Microstructures, Surface/Interfaces and Devices”, Mater. Sci. and Eng. R, Vol.10, pp.275-374(1993).

[76]Huang, Y. S. and F. H. Pollak, “Non-destructive, room temperature, characterization of wafer-sized III-V semiconductor device structures using contactless electromodulation and wavelength-modulated surface photovoltage spectroscopy”, phys. stat. sol. (a), Vol.202, pp.1193-1207(2005).

[77]Varshni, Y. P., “Temperature Dependence of Energy Gap in Semiconductors”, Physica (Utrecht), Vol.34, pp.149-154(1967).

[78]Logothetidis, S., M. Cardona, P. Lautenschlager, and M. Garriga, “Temperature dependence of the dielectric function and the interband critical points of CdSe”, Phys. Rev. B, Vol.34, pp.2458-2469(1986).

[79]Lee, J., E. Koteles, and M. O. Vassell, “Luminescence linewidths of excitons in GaAs quantum wells below 150 K”, Phys. Rev. B, Vol.33,pp.5512-5516(1986).

[80]Lautenschlager, P., Garriga M., Logothetidis S., and Cardona M., “Interband critical points of GaAs and their temperature dependence”, Phys. Rev. B, Vol.35, pp.9174-9189(1987).

[81]Phillips, M. C., M. W. Wang, J. F. Swenberg, J. O. McCaldin, and T. C. McGill, “Proposal and verification of a new visible light emitter based on wide band gap II-VI semiconductors”, Appl. Phys. Lett., Vol.61, pp.1962-1964(1992).

[82]Firszt, F., H. Meczynska, B. Sekulska, J. Szatkowski, W. Paszkowski, and J. Kachniarz, “Composition dependence of the unit cell dimensions and the energy gap in Zn1-xMgxSe crystals”, Semicond. Sci. Technol., Vol.10, pp.197-200(1995).

[83]Ferreira, S. O., H. Sitter, R. Krump, W. Faschinger, G. Brunthaler, and J. T. Sadowski, “Blue photoluminescence of Zn1-xCdxSe quantum wells in ZnMgSe”, Semicond. Sci. Technol., Vol.10, pp.489-491(1995).

[84]Gaines, J. M., R. R. Drenten, K. W. Haberern, T. Marshall, P. Mensz, and J. Petruzzello, “Blue-green injection lasers containing pseudomorphic Zn1−xMgxSySe1−y cladding layers and operating up to 394 K”, Appl. Phys. Lett., Vol.62, pp.2462-2464(1993).

[85]Spiegel, R., G. Bacher, K. Herz, A. Forchel, T. Litz, A. Waag, and G. Landwehr, “Recombination and thermal emission of excitons in shallow CdTe/Cd1-xMgxTe quantum wells”, Phys. Rev. B, Vol.53, pp.4544-4548(1996).

[86]Oh, E., C. Parks, I. Miotkowski, M. D. Sciacca, A. J. Mayur, and A. K. Ramdas, “Optical properties of Mg-based II-VI ternaries and quaternaries: Cd1-xMgxTe and Cd1-x-yMgxMnyTe”, Phys. Rev. B, Vol.48, pp.15040-15046(1993).

[87]Wang, M. W., M. C. Phillips, J. F. Swenberg, E. T. Yu, J. O. McCaldin, and T. C. McGill, “n-CdSe/p-ZnTe based wide band-gap light emitters: Numerical simulation and design”, J. Appl. Phys., Vol.73, pp.4660-4668(1993).

[88]Huang, P. J., Y. S. Huang, F. Firszt, H. Męczyńska, and K.K. Tiong, “Temperature dependence of the band edge excitonic transitions of a wurtzite-type Cd0.925Be0.075Se mixed crystal”, Solid State Communications, Vol.273, pp.82-86(2006).

[89]L. Malikova, Wojciech Krystek, Fred H. Pollak, N. Dai, A. Cavus, and M. C. Tamargo, “Temperature Dependence of the Direct Gaps of ZnSe and Zn0.56Cd0.44Se”, Phys. Rev. B, Vol. 54, pp.1819-1824(1996).

[90]Bousquet, V., E. Tournié, M. Laugt, P. Vennegues, and J. P. Faurie, “Structural and optical properties of lattice-matched ZnBeSe layers grown by molecular-beam epitaxy onto GaAs substrates”, Appl. Phys. Lett., Vol.70, pp.3564-3566(1997).

[91]Wagg, A., F. Fisher, K. Schüll, T. Baron, H. J. Lugauer, T. Litz, U. Zehnder, W. Ossau, T. Gerhard, M. Keim, G. Reuscher, and G. Landwehr, “Laser diodes based on beryllium-chalcogenides”, Appl. Phys. Lett., Vol.70, pp.280-282(1997).

[92]Muñoz, A., P. Rodríguez-Hernández, and A. Mujica, “Electronic and Structural Properties of BeSe, BeTe, and BeS: Comparison between ab-initio Theory and Experiments”, Phys. Stat. Sol., Vol.198 439-446(1996).

[93]Wagg, A., F. Fisher, H. J. Lugauer, T. Litz, J. Laubender, U. Lunz, U. Zehnder, W. Ossau, T. Gerhard, M. Möller, and G. Landwehr, “Molecular-beam epitaxy of beryllium-chalcogenide-based thin films and quantum-well structures”, J. Appl. Phys., Vol.80, pp.792-796(1996).

[94]Mintairov, A. M., S. Raymond, J. L. Merz, F. C. Peiris, S. Lee, U. Bindley, J. K. Furdyna, V. G. Melehin, and K. Sadchikov, “Optical spectra of wide band gap BexZn1−xSe alloys”, Semiconductors, Vol.33, pp.1021-1023(1999).

[95]Zhou, X., Y. Gu, L. K. Igor, G. F. Neumark, L. Zeng, and M. C. Tamargo, “Photoluminescence of ZnxCdyMg1–x–ySe alloys as a manifestation of the breakdown of common-anion rule”, J. Appl. Phys., Vol.94, pp.7136-7138(2003).

[96]Wronkowska, A. A., A. Wronkowski, F. Firszt, S. Łęgowski, H. Męczyńska, A. Marasek, and W. Paszkowicz, “Characterisation of CdBeSe alloy by spectroscopic ellipsometry and photoluminescence”, Phys. Stat. Sol. (c), Vol.4, pp.641-644(2004).

[97]Janowitz, C., O. Günther, G. Jungk, L. Johnson, P. V. Santos, M. Cardona, W. Faschinger, and H. Sitter, “Dielectric function and critical points of cubic and hexagonal CdSe”, Phys. Rev. B, Vol.50, pp.2181-2187(1994).
[98]Maksimov, O., S. P. Guo, M. Muñoz, and M. C. Tamargo, “Optical properties of BeCdSe/ZnCdMgSe strained quantum well structures”, J. Appl. Phys., Vol.90, pp.5135-5138(2001).

[99]Landwehr, G., F. Fischer, T. Baron, T. Litz, A. Wagg, K. Schüll, H. Lugauer, T. Gerhard, M. Keim, and U. Lunz, “On the Activation Energy for the Brittle/Ductile Transition”, Phys. Stat. Sol. B, Vol.202, pp.645-655(1997).

[100]Wagg, A., T. Litz, F. Fischer, H. J. Lugauer, T. Baron, K. Schüll, U. Zehnder, T. Gerhard, U. Lunz, M. Keim, G. Reuscher, and G. Landwehr, “Novel beryllium containing II–VI compounds: basic properties and potential applications”, J. Cryst. Growth, Vol.184/185, pp.1-10(1998).

[101]Kato, E., H. Noguchi, M. Nagai, H. Okuyama, S. Kijima, and A. Ishibashi, “Significant progress in Il-VI blue-green laser diode lifetime”, Electron. Lett., Vol.34, pp.282-284(1998).

[102]Strassburg, M., O. Schulz, U. W. Pohl, D. Bimberg, S. Itoh, K. Nakano, and A. Ishibashi, “Ultra-low threshold current density ZnCdSe SQW laser fabricated byimplantation induced disordering”, Electron. Lett., Vol.36, pp.44-45(2000).

[103]Ferreira, S. O., H. Sitter, W. Faschinger, R. Krump, and G. Brunthaler, “Type I-type II band offset transition of the ZnMgSe-ZnTe system”, J. Cryst. Growth, Vol.146, pp.418-421(1995).

[104]Okuyama, H., K. Nakano, T. Miyajima, and K. Akimoto, “Polarization of I2 emission in ZnSe epitaxial layers on (100) GaAs”, J. Cryst. Growth, Vol.117, pp.797-800(1992).

[105]Wörz, M., E. Griebl, T. Reisinger, R. Flierl, B. Haserer, T. Semmler, T. Frey, and W. Gebhardt, “Gap Energies, Exciton Binding Energies and Band Offsets in Ternary ZnMgSe Compounds and ZnSe/ZnMgSe Heterostructures”, phys. stat. sol. (b), Vol.202, pp.805-816(1997).

[106]Firszt, F., “Luminescence properties of MgxZn1-xSe crystals”, Semicond. Sci. Technol., Vol.8, pp.712-717(1993).

[107]Paszkowicz, W., K. Godwod, J. Domagała, F. Firszt, J. Szatkowski, H. Męczyńska, S. Łęgowski, and M. Marczak, “Lattice parameter, microhardness and energy gap of bulk Zn1−xBexSe alloys”, Solid State Commun., Vol.107, pp.735-740(1998).

[108]Tews, H., G. Neu, and J. De-Sheng, “Phonon scattering at impurity pairs in ZnSe”, Phys. Rev. B, Vol.24, pp.7321-7328(1981).

[109]Tournié, E., C. Morhain, G. Neu, J. P. Faurie, R. Triboulet, and J. O. Ndap, “Photoluminescence study of ZnSe single crystals grown by solid-phase recrystallization”, Appl. Phys. Lett., Vol.68, pp.1356-1358(1996).

[110]Kim, Y. D., S. L. Cooper, M. V. Klein, and B. T. Jonker, “Optical characterization of pure ZnSe films grown on GaAs”, Appl. Phys. Lett., Vo.62, pp.2387-2389(1993).

[111]Lee, H., I. Y. Kim, J. Powell, D. E. Aspnes, S. Lee, F. Peiris, and J. K. Furdyna, “Visible-Near UV Ellipsometric Study of Zn1-xMgxSe and Zn1-xBexSe Alloys”, J. Appl. Phys., Vol.88, pp.878-880(2000)

[112]Kuskovsky, I. L., Y. Gu, M. van der Voort, C. Tian, B. Kim, I. P. Herman, G. F. Neumark, S. P. Guo, O. Maksimov, and M. C. Tamargo, “Properties of MBE-grown ZnBeSe: Study of Be isoelectronic traps and of dopant behavior”, phys. stat. sol. (b), Vol.229, pp.239-243(2002).

[113]Huang, P. J., Y. S. Huang, F. Firszt, H. Męczyńska, and K. K. Tiong, “ Optical characterization of a Cd0.85Mg0.15Se mixed crystal”, J. Physics: Conden. Matter, Vol.19, pp.266002-1~266002-8(2007).

[114]Ivanov, S. V., A. A. Toropov, T. V. Shubina, A. V. Lebedev, S. V. Sorokin, A. A. Stnikova, P. S. Kopev, G. Reuscher, M. Keim, F. Bensing, A. Waag, G. Landwehr, G. Pozina, J. P. Bergman, and B. Monemar, “MBE growth and properties of bulk BeCdSe alloys and digital (BeSe : CdSe)/ZnSe quantum wells”, J. Cryst. Growth, Vol.214/215, pp.109-114(2000).

[115]Ivanov, S. V., O. V. Nekrutkina, S. V. Sorokin, V. A. Kaygorodov, T. V. Shubina, A. A. Toropov, P. S. Kopev, G. Reuscher, V. Wagner, J. Geurts, A. Waag, and G. Landwehr, “BeCdSe as a ternary alloy for blue-green optoelectronic applications”, Appl. Phys. Lett., Vol.78, pp.404-406(2001).

[116]Adachi, M., K. Ando, T. Abe, N. Inoue, A. Urata, S. Tsutsumi, Y. Hashimoto, H. Kasada, K. Katayama, and T. Nakamura, “Slow-mode degradation mechanism and its control in new bright and long-lived ZnSe white LEDs”, phys. stat. sol. (b), 243, pp.943-949(2006).

[117]Nakamura, T., K. Katayama, H. Mori, and S. Fujiwara, “Novel cladding structure for ZnSe-based white LEDs with longer lifetime over 10,000 hours”, phys. stat. sol. (b), Vol.241, pp.2659-2663(2004).

[118]Firszt, F., “Radiative recombination processes in Zn1-xMgxSe layers”, Semicond. Sci. Technol., Vol.12, pp.272-279(1997).

[119]Pollak, F. H., “In Effects of Uniaxial Stress on the Optical Properties of Semiconductors and Semiconductor Microstructures”, in Handbook on Semiconductors and Semimetals, Vol.55, ed. R. K. Willardson and A. C. Beer, North-Holland, Academic, New York, Chap.4(1998).

[120]Madelung, O., “Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds”, Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag, Berlin, Vol.22, (1987).

[121]Surkova, T. P., M. Godlewski, K. Swiatek, P. Kaczor, A. Polimeni, L. Eaves, and W. Giriat, “Intra-shell transitions of 3D metal ions (Fe, Co, Ni) in II–VI wide-gap semiconductor alloys”, Physica B, vol.273, pp.848-851(1999).

[122]Merz, J. L., S. Lee, and J. K. Furdyna, “Self-organized growth, ripening, and optical properties of wide-bandgap II–VI quantum dots”, J. Cryst. Growth, vol.184, pp.228 236(1998).

QR CODE