簡易檢索 / 詳目顯示

研究生: Bushra Sabir
Bushra Sabir
論文名稱: A novel multi winding converter in operation with maximum power point tracker for solar power system
A novel multi winding converter in operation with maximum power point tracker for solar power system
指導教授: 林長華
Chang-Hua Lin
劉華棟
Hwa-Dong Liu
口試委員: 林長華
Chang-Hua Lin
劉華棟
Hwa-Dong Liu
白凱仁
Kai-Jen Pai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 85
外文關鍵詞: multi-winding converter, Hill climbing (HC)
相關次數: 點閱:274下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • In this study, the novel DC-DC power converter is carried out with the assistance of a MPPT for solar system. In recent years, there have been various types of power electronic converters available depending on the application such as (PC power supply, battery charging and Inverter etc.). This manuscript proposes a novel isolated multi-winding inductors (IMWI) converter improved from the conventional SEPIC converter. In this proposed converter, five inductors are design on a single core as a coupling design in order to reduce current ripple and improve converter efficiency and hence reduce the cost and size of the converter which is suitable for regenerative energy systems with unsteady output voltages. It also provides a reliable voltage source for various loads such as battery systems and micro gird, etc. The novel converter is implemented on hardware, and the performance of the proposed DC-DC power converter and traditional SEPIC converter is compared and verified using MATLAB R2021b. The various levels of input voltages are given in order to get constant voltage for battery charging and inverter application. In the new IMWI DC-DC power converter, the duty cycle of the switch has variation. On the other hand, in the traditional SEPIC converter, the duty cycle of power MOSFET varies greatly depending on the relationship between the output and input voltage which deteriorates the converter’s efficiency.

    Chapter 1 : INTRODUCTION........................................................................................................ 1 1.1 Brief introduction ...................................................................................................................... 1 1.2 Literature Review...................................................................................................................... 2 Chapter 2 : MATHEMATIC MODELLING OF PV MODULE.................................................... 8 2.1 Ideal Single Diode Model (ISDM) ........................................................................................ 9 2.2 Improved Two Diode Model (ITDM) ................................................................................. 10 2.3 Simplified Two-Diode Model ............................................................................................. 12 Chapter 3 : MAXIMUM POWER POINT TRACKING .............................................................. 15 3.1 Introduction ......................................................................................................................... 15 3.2 Maximum power point tracking .......................................................................................... 15 3.3 Hill Climbing Algorithm ..................................................................................................... 20 3.4 Features of hill climbing algorithm ..................................................................................... 21 Chapter 4 :TRADITIONAL SEPIC CONVERTER AND PROPOSED CONVERTER ............. 23 4.2 SEPIC Converter Analysis ............................................................................................. 23 4.3 Proposed IMWI Dc-Dc power converter ................................................................................ 27 4.1 Topology Derivation ........................................................................................................... 31 v 4.2 Converter Analysis .............................................................................................................. 32 4.2.1 Mode 1 .................................................................................................................... 32 4.2.2 Mode 2 .................................................................................................................... 33 4.2.3 Mode 3 ................................................................................. 33 Chapter 5 : RESULTS AND DISCUSSION ................................................................................ 37 5.1 Simulation Results ........................................................ 37 5.1.1 Condition 1.............................................................................................................. 38 5.1.2 Condition 2.............................................................................................................. 39 5.1.3 Condition 3.............................................................................................................. 41 5.2 Experimental Results .............................................................................................................. 42 5.2.1 CASE 1: For N=1 ........................................................................................................... 46 5.2.2 CASE 2: For N=2 ........................................................................................................... 49 5.2.3 CASE 3: For N=3 ................................................................................................... 52 5.2.4 CASE 1: N=1 .......................................................................................................... 56 5.2.5 CASE 2: N=2 .......................................................................................................... 59 5.2.6 CASE 1: N=2 .......................................................................................................... 62 Chapter 6 : CONCLUSION AND FUTURE WORK................................................................... 65

    [1] M. F. Guepfrih, G. Waltrich, and T. B. Lazzarin, ‘‘High step-up DC-DC converter using built-in transformer voltage multiplier cell and dual boost concepts,’’ IEEE J. Emerg. Sel. Topics Power Electron., early access, Mar. 4, 2021, doi: 10.1109/JESTPE.2021.3063060.
    [2] G. Catona, E. Bianconi, R. Maceratini, G. Coppola, L. Fumagalli, G. Petrone, and G. Spagnuolo, ‘‘An isolated semiresonant DC/DC converter for high power applications,’’ IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2200–2209, May 2017
    [3] M. Forouzesh, K. Yari, A. Baghramian, and S. Hasanpour, ‘‘Single-switch high step-up converter based on coupled inductor and switched capacitor techniques with quasi-resonant operation,’’ IET Power Electron., vol. 10, no. 2, pp. 240–250, Feb. 2017.
    [4] O. Abdel-Rahim, H. Funato, and J. Haruna, ‘‘A comprehensive study of three high-gain DC-DC topologies based on cockcroft-walton voltage multiplier for reduced power PV applications,’’ IEEJ Trans. Electr. Electron. Eng., vol. 13, no. 4, pp. 642–651, Apr. 2018
    [5] H.-J. Chiu, Y.-K. Lo, J.-T. Chen, S.-J. Cheng, C.-Y. Lin, and S.-C. Mou, “A high-efficiency dimmable LED driver for low-power lighting applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 735–743, Feb. 2010
    [6] Y. Wang, J. Huang, G. Shi, W. Wang, and D. Xu, “A single-stage single switch LED driver based on the integrated SEPIC circuit and class-E converter,” IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5814–5824, Feb. 2016.
    [7] S. J. Chiang, H.-J. Shieh, and M.-C. Chen, “Modeling and control of PV charger system with SEPIC converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Feb. 2009.
    [8] M. R. Banaei and S. G. Sani, ‘‘Analysis and implementation of a new SEPIC-based single-switch buck–boost DC–DC converter with continuous input current,’’ IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10317–10325, Dec. 2018, doi: 10.1109/TPEL.2018.2799876.
    [9] E. Babaei, T. Jalilzadeh, M. Sabahi, M. Maalandish, and R. S. Alishah, ‘‘High step-up DC-DC converter with reduced voltage stress on devices,’’ Int. Trans. Electr. Energy Syst., vol. 29, no. 4, p. e2789, Apr. 2019, doi: 10.1002/etep.2789.
    [10] M. Babalou, M. Dezhbord, R. S. Alishah, and S. H. Hosseini, ‘‘A soft switched ultra high gain DC-DC converter with reduced stress voltage on semiconductors,’’ in Proc. 10th Int. Power Electron., Drive Syst. Technol. Conf. (PEDSTC), Feb. 2019, pp. 677–682, doi: 10.1109/PEDSTC. 2019.8697533.
    [11] R.Meena Devi, V.Geetha, and V.Meenakshi, “Speed Control of SEPIC Converter-Based Induction Motor Drive System. Emerging Solutions for e-Mobility and Smart Grids” 2021, 15-23. DOI: 10.1007/978-981-16-0719-6_2.
    [12] Nguimfack-Ndongmo, J. D. D., Kenné, G., Kuate-Fochie, R., Tchouani Njomo, A. F.,and Mbaka Nfah, E.. Adaptive neurosynergetic control technique for SEPIC converter in PV systems. International Journal of Dynamics and Control 2022, 10, 203-216. DOI: 10.1007/SD0435-021- 00808-1
    [13] D.Sivamani, R.Ramkumar, A.Ali, and Shyam, D..Design and implementation of highly efficient UPS charging system with single-stage power factor correction using SEPIC converter. Materials Today: Proceedings 2021, 45, 1809-1819. DOI: 10.1016/j.matpr.2020.08.744.
    [14] Kumar, V., Ghosh, S., Naidu, N. S., Kamal, S., Saket, R. K., and Nagar, S. K. A current sensor based adaptive step‐size MPPT with SEPIC converter for photovoltaic systems. IET Renewable Power Generation 2021, 15, 1085-1099. doi: 10.1049/rpg2. 12091.
    [15] Maroti, P. K., Padmanaban, S., HolmNielsen, J. B., Bhaskar, M. S., Meraj, M.,and Iqbal, A.. A new structure of high voltage gain SEPIC converter for renewable energy applications. IEEE ACCESS 2019, 7, 89857-89868. doi: 10.1109/ACCESS.2019.292-5564.
    [16] Maroti, P. K., Esmaeili, S., Iqbal, A.,and Meraj, M.. High step-up single switch quadratic modified SEPIC converter for DC microgrid applications. IET Power Electronics 2020, 13, 3717-3726. doi: 10.1049/iet-pel.2020.0147.
    [17] M. V. Mosconi Ewerling, T. Brunelli Lazzarin and C. H. Illa Font. Proposal of an Isolated Two-Switch DC-DC SEPIC Converter. 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC) 2019, 1-6, doi: 10.1109/COBEP/SPEC44138.2019.- 9065718.
    [18] Natchimuthu, S, Chinnusamy, M, Mark, AP. Experimental investigation of PV based modified SEPIC converter fed hybrid electric vehicle (PV-HEV). Int J. Circ. Theor. Appl. 2020, 48, 980– 996. doi: https://doi.org/10.1002/cta.2766.
    [19]Mouslim, S., Kourchi, M., & Ajaamoum, M. (2020). Simulation and analyses of SEPIC converter using linear PID and fuzzy logic controller. Materials Today: Proceedings, 27, 3199-3208.
    [20] V. Ravindran, R. Ponraj, S. Syed Zameerbasha, N. Santhosh Kanna, S. SamuelRaj and B. Sabarish, "Dynamic Performance Enhancement of Modified Sepic Converter," 2021 2nd International Conference for Emerging Technology (INCET), 2021, 1-5, doi: 10.1109/ INCET51464.2021.9456403. [22] V. Ravindran, R. Ponraj, S. Syed Zameerbasha, N. Santhosh
    Kanna, S. SamuelRaj and B. Sabarish, "Dynamic Performance Enhancement of Modified Sepic Converter," 2021 2nd International Conference for Emerging Technology (INCET), 2021, 1-5, doi: 10.1109/ INCET51464.2021.9456403. (correct)
    [21] F. I. Kravetz and R. Gules, Soft-Switching High Static Gain Modified SEPIC Converter, in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 6, 6739-6747, 2021, doi: 10.1109/JESTPE.2021.3079573.
    [22] M. Sivaramkrishnan, A. V. G. A. Marthanda, K. L. Prasad, S. A. Mujeer, U. Durairaj and M. Salim, "Simulation of PV and WECS using CUK and SEPIC converter," 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 2021, 1-7, doi: 10.1109/ICICCS51141.2021.9432225.
    [23] Kumari, R., Pandit, M. & Sherpa, K. Modelling and Comparison of Conventional SEPIC Converter with Cascaded Boost–SEPIC Converter. J. Inst. Eng. India Ser. B 102, 99–109 2021. https://doi.org/10.1007/SD0031 -020-00506-0
    [24] Balaji, C, Anuradha, C, Chellammal, N, Bharadwaj, R. An extendable high efficiency triple-port SEPIC–SEPIC converter with continuous input currents for DC microgrid applications. Int Trans Electr Energ Syst. 2021; 31( 11):e1312-1. doi:10.1002/2050-7038.13121
    [25] Alili, A.; Camara, M.B.; Dakyo, B. Vienna Rectifier-Based Control of a PMSG Wind Turbine Generator. Processes 2022, 10, 413. https:// doi.org/10.3390/pr10020413
    [26] Zunnurain, I.A., Yumi, K.M., Faisal, M.H. 2022. Performance Analysis of Single-Phase Inverter Using SEPIC Converter. In: Md. Zain, Z., Sulaiman, M.H., Mohamed, A.I., Bakar, M.S., Ramli, M.S. (eds) Proceedings of the 6th International Conference on Electrical, Control
    and Computer Engineering. Lecture Notes in Electrical Engineering, vol 842. Springer, Singapore. https:// doi.org/10.1007/978-981-16-8690- 0_19
    [27] S. M. Ghamari, H. Gholizadeh-Narm and F. Khavari, Robust Adaptive Controller Design for DC-DC SEPIC Converter In Photo Voltaic Application 2019 6th International Conference on Control, Instrumentation and Automation (ICCIA), 1-6, doi: 10.1109/ICCIA49288.2019.9 030991.
    [28] A. Yadav and A. Verma, Modeling and Analysis of Modified SEPIC Converter Fed by Solar PV System 2nd International Conference on Advances in Computing, Communication Control and Networking 2020, 633-638, doi: 10.1109/ICACCCN51052.2020.9362890.
    [29]S. M. Ghamari, H. Gholizadeh-Narm and F. Khavari, Robust Adaptive Controller Design for DC-DC SEPIC Converter In Photo Voltaic Application 2019 6th International Conference on Control, Instrumentation and Automation (ICCIA), 1-6, doi: 10.1109/ICCIA49288.2019.9 030991.
    [30] Designing DC/DC converters based on SEPIC topology By Jeff Falin Senior Applications Engineer Texas Instruments Incorporated Analog Applications Journal.
    [31]P. U. Rani and S. Saravanan, "Simulation and modeling Of SEPIC converter with high static gain for renewable application," 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)
    [32] S.P.R. Rao, S.K. Saxena and D.B. Mahajan, “Isolated Single-Ended Primary Inductor Converter (SEPIC) with voltage clamp circuit”, U.S. Patent, US10027233B2, July 2018.
    [33] D.S.L. Simonetti, J. Sebastian and J. Uceda, “The Discontinuous Conduction Mode SEPIC and Cuk Power Factor Preregulators: Analysis and Design”, IEEE transactions on Industrial Electronics, vol. 44, no. 5, october 1997, pp.630-637.
    [34] G. Tibola, E. Lemmen, and J. Duarte, “Passive regenerative snubber cell applied to isolated DCM SEPIC converter,” IEEE 8th International Power Electronics and Motion Control Conference (IPEMC 2016- ECCE Asia), May 2016.
    [35] Y.-T. Chen and S.-Z. Mo, “A Bridgeless Active-Clamp Power Factor Correction Isolated SEPIC Converter with Mixed DCM/CCM Operation”, International conference on Future Energy Electronics Conference (IFEEC), December 2013, pp. 1-6.
    [36] G. Tibola, E. Lemmen, and J. Duarte, “Passive regenerative snubber cell applied to isolated DCM SEPIC converter,” IEEE 8th International Power Electronics and Motion Control Conference (IPEMC 2016- ECCE Asia), May 2016.
    [37] P. Athalye, D. Maksimovic, and R. Erickson, “Improving efficiency of the active-clamped SEPIC rectifier at high line frequencies,” in 20th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2005), vol. 2, March 2005, pp. 1152–1157.
    [38] P. R. R. Somarowthu, S. K. Saxena and D. B. Mahajan, "Isolated SEPIC Converter with a novel Voltage Clamp Circuit," 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2018, pp. 1-6, doi: 10.1109/PEDES.2018.8707789.
    [39] https://sepicconverterdesign.blogspot.com
    [40] T. D Kim, S. H Paeng, J. W Ahn, E. C Nho and J. S Ko, "New Bidirectional ZVS PWM SEPIC-Zeta DC-DC Converter," in Proceedings IEEE Industrial Electronics, pp. 555-560, June 2007.
    [41] A.M. Al Gabri, A. A. Fardoun, and E. H. Ismail, “Bridgeless PFC-modified SEPIC rectifier with extended gain for universal input voltage applications,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4272–4282, Aug. 2015.
    [42] E. H. Ismail, “Bridgeless SEPIC rectifier with unity power factor and reduced conduction losses,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1147–1157, Apr. 2009.
    [43] E. H. Ismail, “Bridgeless SEPIC rectifier with unity power factor and reduced conduction losses,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1147–1157, Apr. 2009
    [44] Mummadi Veerachary, “Power Tracking For Nonlinear PV Sources With Coupled Inductor SEPIC Converter,” IEEE Trans. Aerospace And Electronic Systems, Vol. 41, No. 3, pp. 1019–1029, July. 2005.
    [45] A. F. Witulski, “Introduction to modelling of transformliers and coupled inductors,”. IEEE Tranlsac. on Power Electronics, May 1995.
    [46] A. Chih-Chiang Hua, and B. Cheng-you Tsai “Design of a Wide Input Range DC/DC Converter Based on SEPIC Topology for Fuel Cell Power Conversion,” in Proc. 2010 IEEE Power Electronics Conf. (IPEC), pp. 311– 316.
    [47] A. Kavttha, G. Indira, G. Uma, S. Inoue and H. Akagi, “Analysis and control of Chaos in SEPIC dc – dc Converter using Sliding Mode Control,” in Proc. 2008 IEEE Industry Applications Society Annual Meeting, pp. 1–6.
    [48] Yousef Mahmoud et al.,”A Simple Approach to Modelling and Simulation of Photovoltaic Modules,” IEEE Trans. on Sustainable Energy, Vol. 3, No. 1 ,pp.185-186, Jan 2012
    [49] Z.Salam et al., “An improved two-diode photovoltaic(PV) model for PV system,” in Proc. Joint Int. Conf. Power Electron., Drives and Energy
    Syst., India, pp.1-5,Dec 2010
    [50] .Chitti Babu, Gurjar, S., "A Novel Simplified Two-Diode Model of Photovoltaic (PV) Module," Photovoltaics, IEEE Journal of , Vol.4, No.4, Pp.1156-1161, July 2014
    [51] J. Zhang, T. Wang and H. Ran, "A maximum power point tracking algorithm based on gradient descent method", IEEE Power and Energy Society General Meeting, Calgary, AB, Canada, July 2009.
    [52] R. Guruambeth and R. Ramabadran, "Fuzzy logic controller for partial shaded photovoltaic array fed modular multilevel converter", IET Power Electronics, June 2016.
    [53] L. M. Elobaid, A. K. Abdelsalam and E. E. Zakzouk, "Artificial neural network-based photovoltaic maximum power point tracking techniques: a survey", IET Ren. Power
    Gen., Nov. 2015.
    [54] Farh HMH, Eltamaly AM, Othman MF. Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system. PLoS One., Nov. 2018
    [55] L. Nie, M. X. Mao, Y. H. Wan, L. C. Cui, L. Zhou, and Q. J. Zhang, “Maximum power point tracking control based on modified ABC algorithm for shaded PV system,” in 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), 2019.
    [56] Deboucha, H.; Mekhilef, S.; Belaid, S.; Guichi, A. Modified deterministic Jaya (DMJaya)-based MPPT algorithm under partially shaded conditions for PV system. IET Power Electron, 2020.
    [57] Rao, R.V. Jaya: A Simple and New Optimization Algorithm for Solving Constrained
    and Unconstrained Optimization Problems. International Journal of Industrial Engineering Computations., 2016
    [58] li M. Eltamaly, Al-Saud M.S., Ahmed G. Abokhalil and Hassan M.H. Farh, "Simulation and experimental validation of fast adaptive particle swarm optimization
    strategy for photovoltaic global peak tracker under dynamic partial shading", Renewable and Sustainable Energy Reviews, Elsevier, 2020.
    [59] Dhiman, G., Garg, M., Nagar, A. et al. A novel algorithm for global optimization: Rat Swarm Optimizer. J Ambient Intell Human Comput., 2021.
    [60] K. K. Mohammed, S. Buyamin, I. Shams and S. Mekhilef, "Hybrid Global Maximum Power Tracking Method with Partial Shading Detection Technique for PV Systems," in IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021
    [61] M. Joisher, D. Singh, S. Taheri, D. R. Espinoza-Trejo, E. Pouresmaeil and H. Taheri, "A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions", IEEE Access, Feb. 20
    [62] I. Shams, S. Mekhilef and K. S. Tey, "Maximum Power Point Tracking Using Modified
    Butterfly Optimization Algorithm for Partial Shading, Uniform Shading, and Fast Varying Load Conditions", IEEE Transactions on Power Electronics, May 2021
    [63] R. Motamarri and N. Bhookya, "JAYA Algorithm Based on Lévy Flight for Global MPPT Under Partial Shading in Photovoltaic System", IEEE Journal of Emerging and Selected Topics in Power Electronics, Aug. 2021.

    QR CODE