簡易檢索 / 詳目顯示

研究生: 李佩容
Pei-jung Lee
論文名稱: 戊酸甲酯非均相觸媒之合成反應動力行為研究
Kinetics Study on Synthesis of Methyl Valerate via Heterogeneous Catalytic Reaction
指導教授: 李明哲
Ming-jer Lee
林河木
Ho-mu Lin
口試委員: 陳瑞堂
Jui-tang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 148
中文關鍵詞: 戊酸甲酯非均相觸媒動力
外文關鍵詞: Kinetics Study, Methyl Valerate, Heterogeneous Catalytic Reaction
相關次數: 點閱:155下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用批式反應器探討羥基己酸及戊酸與甲醇進行酯化反應的非均相反應動力行為,反應中使用酸性陽離子交換樹脂Amberlyst 35與Amberlyst 36為觸媒。實驗操作於40 ℃到60 ℃之間,並改變觸媒添加量及不同醇酸進料莫耳比。
酯化反應實驗結果顯示反應速率與酸之平衡轉化率會隨著觸媒量、反應溫度、醇酸進料莫耳比的增加而增加。反應物質間之相對吸附強度由吸附實驗之結果求得,各成分在Amberlyst 35之吸附強弱依序為水 > 甲醇 > 戊酸 > 戊酸甲酯。
羥基己酸甲酯合成反應之動力數據可用理想溶液擬均相模式準確關聯,動力模式參數值經由此數據擬合求得。戊酸與甲醇之酯化反應動力數據分別以理想溶液擬均相模式(IQH)、非理想溶液擬均相動力模式(NIQH)、Langmuir-Hinshelwood-Hougen-Waston (LHHW)模式、Eley-Rideal (ER)模式關聯,NRTL模式用於計算各反應成分之活性係數,關聯的結果顯示LHHW模式為最適合描述戊酸甲酯合成反應的非均相催化動力行為。


The kinetics of the esterification reactions of 6-hydroxycaproic acid or valeric acid with methanol over the cation-exchange resins, Amberlyst 35 and Amberlyat 36, was investigated with a batch reactor. The experiments were conducted at different levels of catalyst loadings and molar ratios of methanol to acid in a temperature range of 40 to 60 ℃.
The reaction rate and the equilibrium conversion of acid increased with increase of catalyst loading, reaction temperature and molar ratio of methanol to acid. The relative adsorption strengths for the reacting species were determined by adsorption experiments. The results indicated that the magnitude of adsorption strengths on Amberlyst 35 followed the order of water > methanol > valeric acid > methyl valerate.
The kinetic data of methyl hydroxycaproate synthesis were correlated well with the ideal-quasi-homogeneous model and the kinetic parameters were determined from the data fitting. The kinetic data of esterification of valeric acid with methanol were correlated with the ideal-quasi-homogeneous (IQH), the non-ideal-quasi-homogeneous (NIQH), the Eley-Rideal (ER), and the Langmuir-Hinshelwood- Hougen-Waston (LHHW) models, respectively. The NRTL model was used to calculate the activity coefficients for each reacting species. The LHHW model yielded the best representation for the kinetic behavior of heterogeneous catalytic synthesis of methyl valerate.

摘 要 I ABSTRACT II 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 本研究之重點 27 第二章 反應動力實驗 35 2-1 酯化反應動力數據量測 35 2-2 藥品 38 2-3 實驗步驟 39 2-4 數據處理 41 2-5 動力反應實驗結果 43 2-6 結果與討論 47 第三章 等溫吸附平衡實驗 75 3-1 雙成分系統的等溫吸附平衡量測 75 3-2 藥品 77 3-3 實驗步驟 78 3-4 數據處理 79 3-5 吸附實驗結果 82 3-6 吸附實驗數據關聯結果 82 第四章 理想溶液擬均相動力模式 90 4-1 動力模式 90 4-2 反應平衡常數計算 91 4-3 反應速率常數計算 93 第五章 非理想溶液動力模式 110 5-1 非理想溶液動力模式 110 5-2速率常數與吸附常數的訂定 112 5-3 戊酸甲酯系統之動力模式關聯結果 114 5-4 非理想溶液之平衡常數 114 第六章 結論與建議 130 6-1 結論 130 6-2 建議及注意事項 131 參考文獻 135 符號說明 145

Abrams, D. S., and J. M. Prausnitz, “Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems,” AIChE J., Vol. 21, pp. 116-128 (1975)

Ali, S. H., and S. Q. Merchand, “Kinetic Study of Dowex 50 Wx8-Catalyzed Esterification and Hydrolysis of Benzyl Acetate,” Ind. Eng. Chem. Res., Vol. 48, pp. 2519-2532 (2009).

Ali, S. H., “Kinetics of Catalytic Esterification of Propionic Acid with Different Alcohols over Amberlyst 15,” Int. J. Chem. Kinet., Vol. 41, pp. 432-448 (2009).

AL-Jarallah, A. M., M. A. B. Siddiqui, and A. K. K. Lee, “Kinetics of Methyl Tertiary Butyl Ether Synthesis Catalyzed by Ion Exchange Resin,” Cand. J. Chem. Eng., Vol. 66, pp. 802-807 (1988).

Altıokka, M. R., and A. Çıtak, “Kinetics Study of Esterification of Acetic Acid with Isobutanol in the Presence of Amberlite Catalyst,” Applied Catalysis A: General, Vol. 239, pp. 141-148 (2003).

Altiokka, M. R., and E. Odes, “Reaction Kinetics of the Catalytic Esterification of Acrylic Acid with Propylene Glycol,” Applied Catalysis A:General, Vol. 362, pp. 115-120 (2009).

Aranda, D. A. G., R. T. P. Santos, N. C. O. Tapanes, A. L. D. Ramos, and O. A. C. Antunes, “Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids,” Catal. Lett., Vol. 122 pp. 20-25 (2008).

Asthana, N. S., A. K. Kolah, D. T. Vu, C. T. Lira, and D. J. Miller, “A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers,” Ind. Eng. Chem. Res., Vol. 45, pp. 5251-5257 (2006).

Blagov, S., S. Parada, O. Bailer, P. Moritz, D. Lam, R. Weinand, and H. Hasse, “Influence of Ion-Exchange Resin Catalysts on Side Reactions of the Esterification of n-Butanol with Acetic Acid,” Chem. Eng. Sci., Vol. 61, pp. 753-765 (2006).

Calvar, N., B. Gonzalez, and A. Dominguez, “Esterification of Acetic Acid with Ethanol: Reaction Kinetics and Operation in a Packed Bed Distillation Column,” Chemical Engineering and Processing, Vol. 46, pp. 1317-1323 (2007).

Chen, X., Z. Xu, and T. Okuhara, “Liquid Phase Esterification of Acrylic Acid with 1-Butanol Catalyzed by Solid Acid Catalysts,” Applied Catalysis A: General, Vol. 180, pp. 261-269 (1998).

Dassy, S., H. Wiame, and F. C. Thyrion, “Kinetics of the Liquid Phase Synthesis and Hydrolysis of Butyl Lactate Catalyzed by Cation Exchange Resin,” J. Chem. Tech. Biotechnol., Vol. 59, pp. 149-156 (1994).

Delgado, P., M. T. Sanz, and S. Beltran, “Kinetic Study for Esterification of Lactic Acid with Ethanol and Hydrolysis of Ethyl Lactate Using an Ion-Exchange Resin Catalyst,” Chemical Engineering and Processing, Vol. 126, pp. 111-118 (2007).

Figueiredo, K. C. D. S., V. M. M. Salim, and C. P. Borges, “Synthesis and Characterization of a Catalytic Membrane for Pervaporation-Assisted Esterfication Reactors,” Catalysis Today , Vol. 133-135, pp. 809-814 (2008).
Fredenslund, A., J. Gmehling, and P. Rasmussen, “Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method,” Elsevier, Amsterdam (1977).

Gangadwala, J., S. Mankar, S. Mahajani, A. Kienle, and E. Stein, “Esterification of Acetic Acid with Butanol in the Presence of Ion-Exchange Resins as Catalysts,” Ind. Eng. Chem. Res., Vol. 42, pp. 2146-2155 (2003).

Gmehling, J., and U. Onken, “Vapor-Liquid Equilibrium Data Collection- 1,” Lehrstuhl Technische Chemie B, Universitat Dortmund, Frankfurt, Germany, pp.54 (1977).

Srensen , J. M., and W. Arlt, “Liquid-Liquid Equilibrium Data Collection-Binary Systems,” Chemistry Data Series, DECHEMA, Frankfurt, Germany, Vol. V, Part1, pp.297 (1979).

Srensen , J. M., and W. Arlt, “Liquid-Liquid Equilibrium Data Collection-Binary Systems,” Chemistry Data Series, DECHEMA, Frankfurt, Germany, Vol. V, Part1, pp.398 (1979).

González, J. C., and J. R. Fair, “Preparation of Tertiary Amyl Alcohol in a Reactive Distillation Column. 1. Reactive Kinetics, Chemical Equilibrium, and Mass-Transfer Issues,” Ind. Eng. Chem. Res., Vol. 36, pp. 3833-3844 (1997).

Grob, S., and H. Hasse, “Reaction Kinetics of the Homogeneously Catalyzed Esterification of 1-Butanol with Acetic Acid in a Wide Range of Initial Compositions,” Ind. Eng. Chem. Res. , Vol. 45, pp. 1869-1874 (2006).

Huang, Y. S., and K. Sundmacher, “Kinetic Study of Propyl Acetate Synthesis Reaction Catalyzed by Amberlyst 15,” International Journal of Chemical Kinetics , Vol. 10, pp. 245-253 (2006).

Kirbaslar, S. I., H. Z. Terzioglu, and U. Dramur, “Catalytic Esterification of Methyl Alcohol with Acetic Acid,” Chinese J. Chem. Eng., Vol. 9, pp. 90-96 (2001).

Kolah, A. K., N. S. Asthana, D. T. Vu, C. T. Lira, and D. J. Miller, “Reaction Kinetics of the Catalytic Esterification of Citric Acid with Ethanol,” Ind. Eng. Chem. Res. , Vol. 46, pp. 3180-3187 (2007).

Lee, M. J., J. Y. Chiu, and H. M. Lin, “Kinetics of Catalytic Esterification of Acetic Acid and n-Butanol over Amberlyst 35,” Ind. Eng. Chem. Res., Vol. 41, pp. 2882-2887 (2002).

Lee, M. J., P. L. Chou, and H. M. Lin, “Kinetics of Synthesis and Hydrolysis of Ethyl Benzoate over Amberlyst 39,” Ind. Eng. Chem. Res., Vol. 44, pp. 725-732 (2005).

Lee, M. J., H. T. Wu, and H. M. Lin, “Kinetics of Catalytic Esterification of Acetic Acid and Amyl Alcohol over Dowex,” Ind. Eng. Chem. Res., Vol. 39, pp. 4094-4099 (2000).

Lilja, J., J. Aumo, T. Salmi, D. Yu. Murzin, P. Mäki-Arvela, M. Sundell, K. Ekman, R. Peltonen, and H. Vainio, “Kinetics of Esterification of Propanoic Acid with Methanol over a Fibrous Polymer-Supported Sulphonic Acid Catalyst,” Applied Catalysis A: General, Vol. 228, pp. 253-267 (2002).

Lilja, J., J. Wärna, T. Salmi, L. J. Pettersson, J. Ahlkvist, H. Grénman, M. Rönnholm, and D. Yu. Murzin, “Esterification of Propanoic Acid with Ethanol, 1-Propanol and Butanol over a Heterogeneous Fiber Catalyst,” Chem. Eng. J., Vol. 115, pp. 1-12 (2005).

Lilja, J., D. Yu. Murzin, T. Salmi, J. Aumo, P. Mäki-Arvela, and M. Sundell, “Esterification of Different Acids over Heterogeneous and Homogeneous Catalysts and Correlation with Taft Equation,” J. Molecular Catalysis A: Chem., Vol. 182-183, pp. 555-563 (2002).

Liu, W. T., and C. S. Tan, “Liquid-Phase Esterification of Propionic Acid with n-Butanol,” Ind. Eng. Chem. Res., Vol. 40, pp. 3281-3286 (2001).

Liu, Y., E. Lotero, and J. G. Goodwin Jr., “A Comparison of the Esterification of Acetic Acid with Methanol Using Heterogeneous Acid Catalysis,” Journal of Catalysis, Vol. 242, pp. 278-286 (2006).

Mahajani, S. M., “Reactions of Glyoxylic Acid with Aliphatic Alcohols Using Cationic Exchange Resins as Catalysts,” Reactive & Functional Polymers, Vol. 43, pp. 253-268 (2000).

Mäki-Arvela, P., T. Salmi, M. Sundell, K. Ekman, R. Peltonen, and J. Lehtonen, “Comparison of Polyvinybenzene and Polyolefin Supported Sulphonic Acid Catalysts in the Esterification of Acetic Acid,” Applied Catalysis A: General, Vol.184, pp. 25-32 (1999).
Malone, M. F., and M. F. Doherty, “Finding the Right Angle,” CAST Communication, Vol. 20, pp. 5-12 (1997).

Mazzotti, M., B. Neri, D. Gelosa, A. Kruglov, and M. Morbidelli, “Kinetics of Liquid-Phase Esterification Catalyzed by Acidic Resins,” Ind. Eng. Chem. Res., Vol. 36, pp. 3-10 (1997).

National Institute of Standards and Technology (NIST) Chemistry WebBook (http:// webbook.nist.gov/chemistry/).

Pasias, S., N. Barakos, C. Alexopoulos, and N. Papayannakos, “Heterogeneously Catalyzed Esterification of FFAs in Vegetable Oils,” Chem. Eng. Technol., Vol. 29, pp. 1365-1371 (2006).

Peters, T. A., E. Benes, A. Holmen, and J. T. F. Keurentjes, “Comparison of Commercial Solid Acid Catalysts for the Esterification of Acetic Acid with Butanol,” Applied Catalysis A: General, Vol. 297, pp. 182-188 (2006).

Pipus, G., I. Plazl, and T. Koloini, “Esterification of Benzoic Acid in Microwave Tubular Flow Reactor,” Chem. Eng. J., Vol. 76, pp. 239-245 (2000).

Pöpken, T., L. Götze, and J. Gmehling, “Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis,” Ind. Eng. Chem. Res., Vol. 39, pp. 2601-2611 (2000).

Rehfinger, A., and U. Hoffmann, “Kinetics of Methyl Tertiary Butyl Ether Liquid Phase Synthesis Catalyzed by Ion Exchange Resin - I. Intrinsic Rate Expression in Liquid Phase Activities,”Chem. Eng. Sci., Vol. 45, pp. 1605-1617 (1990).

Renon, H., and J. M. Prausnitz, “Local Compositions in Thermodynamic Excess Function for Liquid Mixtures,” AIChE J., Vol. 14, pp.135-144 (1968).

Sanz, M. T., R. Murga, and J. L. Cabezas, “Autocatalyzed and Ion-Exchange-Resin-Catalyzed Esterification Kinetics of Lactic Acid with Methanol,” Ind. Eng. Chem. Res., Vol. 41, pp. 512-517 (2002).

Schmid, B., M. Doker, and J. Gmehling, “Esterification of Ethylene Glycol with Acetic Acid Catalyzed by Amberlyst 36,” Ind. Eng. Chem. Res. , Vol. 47, pp. 698-703 (2008).

Schmitt, M., and H. Hasse, “Chemical Equilibrium and Reaction Kinetics of Heterogeneously Catalyzed n-Hexyl Acetate Esterification,” Ind. Eng. Chem. Res. , Vol. 45, pp. 4123-4132 (2007).

Schwarzer, S., and U. Hoffmann, “Experimental Reaction Equilibrium and Kinetics of the Liquid-phase Butyl Acrylate Synthesis Applied to Reactive Distillation Simulations,” Chem. Eng. Technol., Vol. 25 , pp. 975-980 (2002).

Selyakova, V. A., G. F. Vytnov, and A. P. Sineokov, “Study of the Esterification of Acrylic Acid by Butyl Alcohol,” Russ. J. Phys. Chem. (Engl. Transl.), Vol. 50, pp. 1692-1694 (1976).

Seo, Y., and W. H. Hong, “Kinetics of Esterification of Lactic Acid with Methanol in the Presence of Cation Exchange Resin Using a Pseudo- Homogeneous Model,” J. Chem. Eng. Japan, Vol. 33, pp. 128-133 (2000).

Song, W., G. Venimadhavan, J. M. Manning, M. F. Malone, and M. F. Doherty, “Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis,” Ind. Eng. Chem. Res., Vol. 37, pp. 1917-1928 (1998).

Steele, W. V., R. D. Chirico, A. B. Cowell, S. E. Knipmeyer, and A. Nguyen, “Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Methyl Benzoate, Ethyl Benzoate, (R)-(+)-Limonene, tert-Amyl Methyl Ether, trans-Crotonaldehyde, and Diethylene Glycol,” J. Chem. Eng. Data, Vol. 47, pp. 667-688 (2002).

Su, C. H., C. C. Fu, J. Gomes, I. M. Chu, and W. T. Wu, “A Heterogeneous Acid-Catalyzed Process for Biodiesel Production from Enzyme Hudrolyzed Fatty Acids,” AIChE Journal, Vol. 54, pp. 327-336 (2008).

Teo, H. T. R., and B. Saha, “Heterogeneous Catalyzed Esterification of Acetic Acid with Isoamyl Alcohol: Kinetic Studies,” Journal of Catalysis, Vol. 228, pp. 174-182 (2004).

Tesser, R., M. D. Serio, M. Guida, M. Nastasi, and E. Santacesaria, “Kinetics of Oleic Acid Esterification with Methanol in the Presence of Triglycerides,” Ind. Eng. Chem. Res., Vol. 44, pp. 7978-7982 (2005).

Toit, E., R. Schwarzer, and W. Nicol, “Acetone Condensation on a Cation Exchange Resin Catalyst: The Pseudo Equilibrium Phenomenon,” Chem. Eng. Sci., Vol. 59, pp. 5545-5550 (2004).

Toukoniitty, B., J.-P. Mikkola, K. Eränen, T. Salmi, and D. Yu Murzin, “Esterification of Propionic Acid under Microwave Irradiation over an Ion-Exchange Resin,” Catalysis Today, Vol. 100, pp. 431-435 (2005).

TRC Thermodynamic Table: Non-Hydrocarbons, Thermodynamic
Research Center, The Texas A & M University System: College Station, TX (1993).

Tsao, J. C. Y., T. C. Huang, and H. S. Weng, “Kinetic Studies for the Preparation of Itaconates by Continuous-Flow and Fixed-Bed Methods,” Ind. Eng. Chem. Process Des. Dev., Vol. 7, pp. 401-409 (1968).

Xu, Z. P., and K. T. Chuang, “Kinetics of Acetic Acid Esterification over Ion Exchange Catalyst,” Cand. J. Chem. Eng., Vol. 74, pp. 493-500 (1996).

Xu, X., Y. Zheng, and G. Zheng, “Kinetics and Effectiveness of Catalyst for Synthesis of Methyl tert-Butyl Ether in Catalytic Distillation,” Ind. Eng. Chem. Res., Vol. 34, pp. 2232-2236 (1995).

Yadav, G. D., and M. B. Thathagar, “Esterification of Maleic Acid with Ethanol over Cation-Exchange Resin Catalysts,” Reactive & Functional Polymers, Vol. 52, pp. 99-110 (2002).

Yalcinyuva, T., H. Deligoz, I. Boz, and M. A. Gurkaynak, “Kinetics and Mechanism of Myristic Acid and Isopropyl Alcohol Esterification Reaction with Homogeneous and Heterogeneous Catalysts,” International Journal of Chemical Kinetics, Vol. 40, pp. 136-144 (2008).

Yang, Z., M. Li, and J. Yang, “Kinetics of Esterification of Lactic acid with Ethanol Catalyzed by Cation-Exchange Resins,” Reactive & Functional Polymers, Vol. 61, pp. 101-114 (2004).

邱如吟,「產製丙酸丁酯之非均相酯化反應研究」,碩士論文,台灣科
技大學化工研究所(2000)。

周珮琳,「苯甲酸乙酯之合成與水解反應動力研究」,碩士論文,台灣科技大學化工研究所(2003)。

蔡雨廷,「戊二酸與甲醇的非均相酯化反應動力行為研究」,碩士論文,台灣科技大學化工研究所(2005)。

蔡於展,「戊酸甲酯非均相觸媒之合成反應動力行為研究」,碩士論文,台灣科技大學化工所(2006)。

無法下載圖示 全文公開日期 2014/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE