簡易檢索 / 詳目顯示

研究生: 江瑋儒
Wei-Ju Chiang
論文名稱: 基於基礎層及周圍編碼區塊資訊之SHVC快速編碼決策
A fast SHVC coding scheme based on base layer co-located CU and neighboring and cross-layer PU coded information
指導教授: 陳建中
Jiann-Jone Chen
口試委員: 杭學鳴
Hsueh-Ming Hang
郭天穎
Tien-Ying Kuo
鍾國亮
Kuo-Liang Chung
吳怡樂
Yi-Leh Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 63
中文關鍵詞: 可調式高效率視訊編碼
外文關鍵詞: SHVC
相關次數: 點閱:171下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著數位多媒體處理技術不斷進步,視訊應用不斷往高解析度、高幀率和高壓縮率的方向發展,為了使高畫質影片在有限的頻寬下傳輸,視訊編碼技術的效能扮演了重要的角色。最新一代視訊編碼標準HEVC(High Efficient Video Coding)與前一代視訊編碼標準(H.264/AVC)相較,在相同的編碼品質下可達到兩倍之壓縮率。在HEVC運用了編碼單元(Coding Unit, CU)、預測單位(Prediction Unit, PU) 以及轉換單位(Transform Unit, TU)等,在編碼過程中找出最佳的單元組合以獲得最好的編碼效能(率失真-成本),但這個編碼過程的運算複雜度也大幅提升。為了應用在異質網路多使用者的環境中,基於HEVC編碼架構之延伸應用架構,可調式高效視訊編碼(Scalable Extension of the High Efficiency Video Coding, SHVC),可以提供不同位元率的碼流,SHVC經過ㄧ次編碼便能得到能夠解碼出至少兩種以上的畫面率、解析度、品質的視訊,因此使不同的使用者能夠依據所使用的裝置之解析度或網路環境來接收適當的視訊品質。SHVC編碼過程中同樣需要處理CU、PU、和TU等單元的最佳組合之決定程序。因此有效運用SHVC層間關聯性以降低運算複雜度也是很重要的研究議題。本篇論文提出了兩種快速編碼方法:快速CU深度決策於增強層、快速PU模式決策於增強層。方法一為利用基礎層同位置CU的深度來決定增強層當前CU深度的測試範圍,可減少約47.59%的增強層編碼時間;方法二為利用空間性、時間性、層間性參考PU來預測當前區塊的複雜度,進而決定需要測試的預測模式,並提前決定是否為SKIP模式,跳過接下的模式與深度不測試,此法可減少58.43%的增強層編碼時間。實驗結果顯示將兩種方法結合在一起,平均能減少70.52%的增強層編碼時間。


With the advance of digital media processing technology, multimedia processing platforms have been developed toward higher resolution and framerate applications. The new video coding standard, High Efficiency Video Coding (H.265/HEVC), can provide twice the compression ratio under the same encoded quality, as compared to the previous one, H.264/AVC. In the HEVC, it utilizes Coding Unit (CU), Prediction Unit (PU) and Transform Unit (TU) to perform motion estimation/compensation and entropy coding for efficient video coding, i.e., best rate-distortion cost. However, the time complexity of this high efficient video coding is very high, as compared to previous ones. The extended application format of HEVC, scalable HEVC (SHVC), has been developed to serve multi-users with heterogeneous network and devices. The SHVC can provide different bitrate, resolution, or quality formats of the same video through the one-time encoding process. As the SHVC is developed based on the HEVC, its time complexity is high and has to be reduced for practical applications. In the SHVC, it has to select one best encoding mode, from different CUs, Pus and Tus, to achieve best RD-cost encoding. In this research, we proposed to utilize two fast encoding schemes to speed up the SHVC encoding process. (1) We utilized the encoding depth information of the co-located CU of the base layer to reduce the range of determining the current CU coding depth of the enhancement layer. It can reduce 47.59% of encoding time for the enhancement layer video; (2) We utilized the correlation between spatial, temporal and inter-layer PUs to predict the complexity of the current PU, which can reduce the PU mode decision operation steps. It can also be used to determine whether to SKIP or not to eliminate unnecessary processing steps. It can reduce 58.43% of time to encode enhancement layer video. Experiments showed that the overall encoding time can be reduced 70.52% processing time when both schemes are adopted by the SHVC.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1研究動機與目的 1 1.2 問題描述與研究方法 3 1.3 論文組織 4 第二章 背景知識 5 2.1 HEVC視訊編碼標準介紹 5 2.1.1 HEVC制定 5 2.1.2 HEVC網路提取層(NAL) 6 2.1.3 HEVC視訊編碼層(VCL) 6 2.2 SHVC視訊編碼標準介紹 25 第三章 SHVC快速編碼決策 28 3.1 相關文獻探討 28 3.2 SHVC快速演算法 32 3.2.1 方法一:快速CU深度決策於增強層(Proposed Fast CU Depth Decision in Enhancement Layer) 32 3.2.1 方法二:快速PU模式決策於增強層(Proposed Fast PU Mode Decision in Enhancement Layer) 37 第四章 實驗結果與討論 44 4.1 實驗環境設置 44 4.2 實驗結果 46 4.2.1快速CU深度決策於增強層(方法一)與文獻[21]實驗結果比較 46 4.2.2快速PU模式決策於增強層(方法二)實驗結果 50 4.2.3 結合本篇論文提出方法一與方法二之實驗結果 53 第五章 結論與未來研究探討 59 5.1 結論 59 5.2 未來展望 60 參考文獻 61

[1] T. Wiegand, et al, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003.
[2] H. Schwarz, et al, “Overview of the scalable video coding extension of the H. 264/AVC standard,” IEEE Transactions on circuits and systems for video technology, vol. 17, no. 9, pp. 1103-1120, Sep. 2007.
[3] G. J. Sullivan, et al, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, Sep. 2012.
[4] J. M. Boyce, et al, “Overview of SHVC: Scalable Extensions of the High Efficiency Video Coding Standard, ” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 20-34, Jan. 2016.
[5] SHVC Test Model. http://hevc.hhi.fraunhofer.de/shvc
[6] J. Choi, et al, “Fast coding unit decision method based on coding tree pruning for high efficiency video coding,” SPIE Optical Engineering, vol. 51, Issue 3, March 2012.
[7] J. Lainema, et al, “Intra Coding of the HEVC Standard,” IEEE Trans. Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1792-1801, Dec 2012.
[8] http://www.hindawi.com/journals/ijrc/2012/473725/fig1/
[9] X.-L. Tang, et al, “An analysis of TZ search algorithm in JMVC,” IEEE Conf. Green Circuits and Systems (ICGCS), Shanghai, pp. 516-520, 2010.
[10] J.-F. Hu, et al, “Speeding up the decisions of quad-tree structures and coding modes for HEVC coding units,” Institute of Computer and Communication Engineering Department of Electrical Engineering NCKU, June 2012.
[11] http://blog.sina.com.cn/s/blog_520811730101m9y2.html
[12] J. Chen, et al, “Scalable HEVC (SHVC) Test Model 7 (SHM 7),” document JCTVC-R1007. Sapporo, 2014.
[13] G. J. Sullivan, et al, “Standardized extensions of high efficiency video coding (HEVC),” IEEE Journal of selected topics in Signal Processing vol. 7, no. 6, pp 1001-1016, 2013.
[14] H. Kibeya, et al, “A fast coding algorithm based on fast mode decision for HEVC standard,” IEEE Conf. Sciences and Techniques of Automatic Control and Computer Engineering (STA), Dec 2013.
[15] Z. Yongfei, et al, “Fast Coding Unit Depth Decision Algorithm for Interframe Coding in HEVC,” IEEE Data Compression Conference (DCC), March 201.
[16] J. H. Lee, et al, “Fast encoding algorithm for high-efficiency video coding (HEVC) system based on spatio-temporal correlation,” Journal of Real-Time Image Processing, pp 1-12, 2015.
[17] D. Wang, et al, “Fast Mode and Depth Decision Algorithm for Intra Prediction of Quality SHVC,” International Conference on Intelligent Computing. Springer International Publishing, 2014.
[18] X. Zuo, et al, “Fast mode decision method for all intra spatial scalability in SHVC,” Visual Communications and Image Processing Conference, 2014 IEEE. IEEE, 2014.
[19] N. Shi, et al, “Efficient mode decision algorithm for scalable high efficiency video coding,” SPIE/COS Photonics Asia. International Society for Optics and Photonics, 2014.
[20] R. Bailleul, et al, “Fast mode decision for SNR scalability in SHVC digest of technical papers,” Consumer Electronics (ICCE), 2014 IEEE International Conference on. IEEE, 2014.
[21] Q. Ge, et al, “Fast encoding method using CU depth for quality scalable HEVC,” Advanced Research and Technology in Industry Applications (WARTIA), 2014 IEEE Workshop on. IEEE, 2014.
[22] K. Kim, et al, “Fast Enhancement Layer Encoding Method using CU Depth Correlation between Adjacent Layers for SHVC,” Journal of the Institute of Electronics and Information Engineers vol. 50, no. 6, pp. 260-264, 2013.
[23] X. Li, et al, “An effective CU size decision method for quality scalability in SHVC,” Multimedia Tools and Applications, pp. 1-20, March 2016.
[24] H. Z. Tohidypour, et al, “Fast mode assignment for quality scalable extension of the high efficiency video coding (HEVC) standard: a Bayesian approach,” Proceedings of the 6th Balkan Conference in Informatics. ACM, pp. 61-65, Sep. 2013.
[25] H. R. Tohidypour, et al, “Adaptive search range method for spatial scalable HEVC,” IEEE Conf. on Consumer Electronics (ICCE), pp. 191–192, January 2014.
[26] G. Bjontegaard, “Calculation of Average PSNR Differences Between RD Curves,” ITU-T SG16/Q6 Document, VCEG-M33, Austin, April 2001.
[27] G. Bjontegaard, “Improvements of the BD-PSNR Model,” ITU-T SG16/Q6, Document, VCEG-AI11, Berlin, July 2008.

QR CODE