簡易檢索 / 詳目顯示

研究生: 李育茲
Yu-Tzu Lee
論文名稱: NX二次開發之在線式自由曲面誤差補償法之研究
A Study on Free-Form Surface Error Compensation by NX Secondary Development of On-Machine Measurement
指導教授: 李維楨
Wei-Chen Lee
口試委員: 鍾俊輝
Chun-Hui Chung
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 161
中文關鍵詞: 自動化NX二次開發線上量測誤差補償自由曲面
外文關鍵詞: Automation, NX secondary development, On-line measurement, Error compensation, Free-form surface
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前工業界在二維路徑補償可透過CNC 控制器做內建磨耗補正、手動偏移NC 加工路徑,甚至使用外部程式運算來達到更精確之加工尺寸。但在三維曲面補償,現階段一般CNC 控制器是無法做尺寸補正,隨著曲面應用越來越廣泛,尺寸精度的要求也隨之提升。本研究之目的為開發一自動化補償系統,透過線上量測設備並藉由NX Open API 以及Visual Studio C#撰寫NX 二次開發程式,以改善CNC 銑床加工的尺寸誤差、尺寸歪斜,以及可預期之誤差來源等問題。實驗所使用之加工設備為五軸數控銑床,並使用RENISHAW OMP400 進行線上檢測,所使用之軟體包含NX CAD/CAM 以及Visual Studio C#程式語言,並開發自動曲面誤差補償演算法,以補償銑床加工產生之尺寸偏差。
NX 二次開發程式包含量測工法之佈點功能、鏡射補償方法與向量修正理論、曲線及曲面擬合方法和CAD 模型重建功能。透過程式讀取線上量測後之量測報表,取得量測點之X、Y、Z 座標值並建點於NX CAD 模型上,自動計算並透過向量修正理論取得實際曲面之補償點,再將所有補償點劃分區塊並擬合最佳階數曲線。藉由擬合曲線並透過NURBS 理論以擬合曲面,最後自動重建CAD 模型,以生成精加工路徑,即為補償路徑。
本研究提出一向量修正理論,認為理想量測點與實際量測點將受曲面複雜度、探頭真實直徑、機台幾何誤差及量測誤差等影響,導致兩量測點並非於相同量測向量上,實際測試其在五軸工法上有顯著的誤差影響,其含有0.001 mm 至0.007 mm 之誤差,可透過此方法修正。
三維曲面自動化誤差補償實驗,分別進行三種曲面模型加工測試,其一為由二次曲線組成之曲面,其二為曲面由兩條二次曲線一凹一凸掃掠成形,最後為曲面由兩條二次曲線以及兩條導引曲線組成。比較三種曲面模型之中加工量測結果與補償後數據,其誤差百分比平均下降分別為87.30 %、92.12 %、89.89 %,代表補償後之準確度有明顯地提升。而根據其標準差平均分別下降4.8 μm 、2.5
μm 、1. 9 μm ,代表此誤差補償方法可確實改善工件尺寸歪斜之問題,並提升工件尺寸之精密度。
使用不同控制器之機台進行驗證自動化誤差補償系統,由第一個曲面模型進行測試,其4 個曲面誤差百分比分別下降85.84 %、85.27 %、28.55 %、82.74 %,而母體標準差分別下降1.9 μm 、2.1 μm 、1.6 μm 、1.7 μm ,結果證明其自動化系統可應用於不同之機台。
本研究結合CAD/CAM 二次開發達成自動化,而習知技術所使用佈點演算法,需倚靠CAIP(Computer-Aided Inspection Planning)或其它軟體,無法將加工、量測、補償一併整合於同一系統上,對自動化來說將造成許多不必要之麻煩。故本研究進行開發並將功能統一於同一軟體上,即在CAD/CAM 上實現全自動加工、量測及補償,將前述工作時間由幾小時降至約1 分鐘,且可避免不同操作人之人為疏失。


Currently, the industry can compensate errors by using the compensation function
in a CNC controller to achieve better accuracy in 2D dimensions. However, most of
CNC controller cannot compensate errors effectively for free-form surfaces. As the applications of the free-form surfaces are getting popular, the requirements for dimensional accuracy increase. We use Visual Studio C# and NX Open API to write the secondary development program of NX. The objective of this research was to enhance the accuracy and precision of parts made by CNC machines by compensating the errors. A five-axis CNC milling machine was used in the experiments, and on-line probe used in the experiments was RENISHAW OMP400. It follows that an automatic surface error compensation algorithm was developed to compensate the errors caused by milling.
NX secondary development includes the function of distributing measuring points,
compensation of error-mirroring method, the theory of revising compensating vector,the curve-fitting method, and the CAD model reconstruction. First, the measurement results were read, then the measured points were created in NX CAD, and the the compensation points were figured out by the error-mirroring method. After obtaining compensated points, we will do curve-fitting by using optimal fitting parameters algorithm. From the fitted curves, fit surface can be automatically reconstructed by using NURBS (Non-Uniform Rational B-Spline) theory. Finally, Reconstruct CAD model automatically to generate finishing cutting tool path, which is the path of compensation.
We also proposed the vector correction theory, as we found that the ideal
measurement points and actual measurement points are not always on the same normal vector, which can be affected by the complexity of the measurement surface, the diameter of probe, the geometrical errors of the machine, and the measurement errors, etc. The measurement can be corrected by the vector correction theory.
In this research, there are three different types of surfaces, and they are a convex surface, a half-concave half-convex surface and a surface sweep by the concave and convex surface. The absolute errors of surface models were reduced by 96.65 %, 91.89 %, and 89.89 %, respectively. Moreover, the standard deviations were reduced by 4.8 μm 、2.5 μm and 1.9 μm , respectively, which mean that this error compensation method can solve the problem of uneven errors effectively, and also can enhance precision of dimension.
To verify that the automatic error compensation method can be used on different
machines, a model was tested that has four surface. The absolute errors of surface models were reduced by 85.84 %、85.27 %、28.55 %、82.74 %, and the standard deviations were reduced by 1.9 μm 、2.1 μm 、1.6 μm and 1.7 μm , respectively. The results turned out that automatic error compensation system can be applied to different machines.
This research was implemented by using NX CAD/CAM secondary development program to achieve automation. We combined machining, measuring, and compensating into one one software package, which not only can avoid the communication among different software packages, but also save time and prevent human from making errors.

中文摘要 I Abstract III 誌 謝 V 目 錄 VI 圖索引 IX 表索引 XIII 第1 章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 5 1.3 研究目的 14 第2 章 軟硬體設備 15 2.1 五軸數控銑床-SIEMENS 15 2.1.1 設備介紹 15 2.1.2 使用刀具與切削材料 15 2.1.3工法參數設定 16 2.2 接觸式探頭-RENISHAW OMP400 20 2.2.1 設備介紹 20 2.2.2 旋轉中心校正 20 2.2.3 探頭長度校正 22 2.2.4 探球直徑校正 24 2.2.5 量測後處理 26 2.3 接觸式探頭-HEIDENHAIN TS740 29 2.3.1 設備介紹 29 2.3.2 量測後處理 29 2.4 二次開發應用軟體 34 2.4.1 軟體介紹 34 2.4.2 二次開發原理及介面 34 2.4.3 誤差補償概念 36 第3 章 研究方法 38 3.1 補償系統架構 38 3.2 曲面補償理論 39 3.3 曲面模型設計 44 3.3.1 二次曲線UV 向恆定 44 3.3.2 二次曲線(凹)與二次曲線(凸)掃成 44 3.3.3 兩二次曲線掃成兩導引曲線:UV 向恆變 45 3.4 量測佈點演算法 46 3.4.1 均勻佈點 46 3.4.2 加密佈點運算 46 3.4.3 佈點方向順序 48 3.5 曲面擬合方法 50 3.5.1 曲線擬合結果判別 50 3.5.2 曲面擬合結果判別 50 3.5.3 各擬合方法比較 52 3.6 重建曲面模型 54 3.7 工序編程 55 第4 章 實驗結果與討論 58 4.1 ISO 試片驗證二維補償法 58 4.2 西門子控制器 60 4.2.1 曲面模型一補償 60 4.2.2 曲面模型二補償 66 4.2.3 曲面模型三補償 70 4.3 海德漢控制器 75 4.3.1 擬合方法驗證 75 4.4 準確度與精密度探討 77 第5 章 自動化應用 83 5.1 自動化背景與動機 83 5.2 自動化系統架構 85 5.3 實際測試比對 87 第6 章 結論與未來展望 89 6.1 結論 89 6.2 未來展望 90 參考文獻 91 附錄 93

[1] M. Fallah and B. Arezoo, "Compensation of reference surface errors in the
machining of free form features," Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, vol. 226, pp. 824-836,
2012.
[2] M. J. Ren, C. F. Cheung, and L. B. Kong, "A bidirectional curve network based
sampling method for enhancing the performance in measuring ultra-precision
freeform surfaces," Precision Engineering, vol. 37, pp. 345-352, 2013.
[3] B. B. S.D Phillips, W.T Estler, John Buttress, "The estimation of measurement
uncertainty of small circular features measured by coordinate measuring
machines," Precision Engineering, vol. 22, pp. 87-97, 1998.
[4] M. R. a. D. B. I. Ainsworth, "CAD-Based Measurement Path Planning for Free-
Form Shapes Using Contact Probes," The International Journal of Advanced
Manufacturing Technology, vol. 16, pp. 23-31, 2000.
[5] L. K. Mingjun Ren, Lijian Sun, ChiFai Cheung, "A Curve Network Sampling
Strategy for Measurement of Freeform Surfaces on Coordinate Measuring
Machines," IEEE Transactions on Instrumentation and Measurement, vol. 66,
pp. 3032-3043, 2017.
[6] S. Martínez-Pellitero, J. Barreiro, E. Cuesta, and A. I. Fernández-Abia,
"Knowledge base model for automatic probe orientation and configuration
planning with CMMs," Robotics and Computer-Integrated Manufacturing, vol.
49, pp. 285-300, 2018.
[7] Y. Chen, H. Tang, Q. Tang, A. Zhang, D. Chen, and K. Li, "Machining error
decomposition and compensation of complicated surfaces by EMD method,"
Measurement, vol. 116, pp. 341-349, 2018.
[8] M. Poniatowska, "Free-form surface machining error compensation applying
3D CAD machining pattern model," Computer-Aided Design, vol. 62, pp. 227-
235, 2015.
[9] Y. M. Chiang and F. L. Chen, "Sculptured surface reconstruction from CMM
measurement data by a software iterative approach," International Journal of
Production Research, vol. 37, pp. 1679-1695, 1999/05/01 1999.
[10] Z. Xiong and Z. Li, "Probe Radius Compensation of Workpiece Localization,"
Journal of Manufacturing Science and Engineering, vol. 125, p. 100, 2003.
[11] F. Biral and P. Bosetti, On-line measurement and compensation of geometrical
errors for Cartesian numerical control machines vol. 2006, 2006.
[12] R. Guiassa, J. R. R. Mayer, P. St-Jacques, and S. Engin, "Calibration of the
cutting process and compensation of the compliance error by using on-machine
probing," The International Journal of Advanced Manufacturing Technology,
vol. 78, pp. 1043-1051, 2014.
[13] Y. Chen, J. Gao, H. Deng, D. Zheng, X. Chen, and R. Kelly, "Spatial statistical
analysis and compensation of machining errors for complex surfaces," Precision
Engineering, vol. 37, pp. 203-212, 2013.
[14] M.-W. Cho, T.-i. Seo, and H.-D. Kwon, "Integrated error compensation method
using OMM system for profile milling operation," Journal of Materials
Processing Technology, vol. 136, pp. 88-99, 2003.
[15] J. Lai, J. Fu, C. Xia, Z. Lin, G. Fu, and Z. Chen, "Error compensation of freeform
surface with critical area based on T-spline surface reconstruction,"
International Journal of Computer Integrated Manufacturing, vol. 30, pp. 782-
791, 2016.
[16] A. Lasemi, D. Xue, and P. Gu, "Tool path re-planning in free-form surface
machining for compensation of process-related errors," International Journal
of Production Research, vol. 52, pp. 5913-5931, 2014.
[17] J. Fang, O. Svoboda, Z. Wang, P. Bach, J. Yang, and C. Wang, "Correlation of
3D volumetric positioning errors and temperature distributions: theory and
measurement," Proc. of SPIE, vol. 6358, p. 63583Q, 2006.
[18] R. Guiassa, J. R. R. Mayer, M. Balazinski, S. Engin, and F. E. Delorme, "Closed
door machining error compensation of complex surfaces using the cutting
compliance coefficient and on-machine measurement for a milling process,"
International Journal of Computer Integrated Manufacturing, vol. 27, pp. 1022-
1030, 2014.
[19] Wang, Jeng-Yu (2018). A study on two-dimensional error compensation on a
small machine tool. Unpublished doctoral dissertation, National Taiwan
University of Science and Technology.
[20] https://www.makino.com/vertical-machining-centers/v33i/ MAKINO V33i 立
式中心加工機
[21] http://www.hexagonmetrology.com.cn/Product_view_1_400.aspx HEXAGON
GLOBAL SF 三次元量測儀
[22] http://www.speedtiger.com.tw/document/ 震虎刀具綜合型錄 P405 頁
[23] https://docs.plm.automation.siemens.com/data_services/resources/nx/10/nx_a -
-pi/en_US/custom/ugopen_doc/index.html Open C API

無法下載圖示 全文公開日期 2023/08/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE