簡易檢索 / 詳目顯示

研究生: 彭晴園
Ching-Yuan Peng
論文名稱: 鍶摻雜76S介孔生醫玻璃之合成與微結構鑑定
Microstructural observation and synthesis of strontium-doped 76S mesoporous bioactive glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
鄭詠馨
Yung-Hsin Cheng
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 介孔生醫玻璃骨整合
外文關鍵詞: Mesoporous bioactive glass, Strontium, Osseointegration
相關次數: 點閱:235下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著年齡的增加,人體吸收鈣質的能力下降,人體血液中的鈣質逐漸流失,為了平衡血液中的鈣離子濃度,體內蝕骨細胞會將骨骼中的鈣離子釋放至血液供細胞利用,骨吸收速率大於形成速率,使骨密度明顯降低,骨骼內部孔洞逐漸擴大,呈現中空疏鬆的現象,使得骨骼強度變脆、變弱,形成骨質疏鬆。
當骨質疏鬆症患者骨折時,其骨修復更是一大挑戰,生醫玻璃具有良好的生物相容性,表面能與骨骼產生鍵結,並且可讓細胞附著,逐步再生修復骨缺損。做為骨填充材料,生醫玻璃可藉由添加額外的元素增加性質。由於鍶與鈣具有相似的化學性質與原子半徑,鍶也可以被骨頭吸收,鍶與骨骼中的氫氧基磷灰石有良好的結合能力,可合成含鍶的氫氧基磷灰石覆蓋於被蝕骨細胞侵蝕的位置,抑制蝕骨細胞的作用,鍶可通過抑制骨吸收和促使成骨細胞分化骨細胞促進骨骼形成,達到增加骨質密度、提高骨骼強度的功效。
在本研究利用雙氧水可分解成水和氧氣之特性做為造孔劑,添加1、5、10 mol%鍶利用噴霧熱裂解法製備鍶摻雜介孔生醫玻璃粉末,進行鍶離子釋放與鹼性磷酸酶含量測試實驗。而實驗結果顯示,添加5 mol%鍶之介孔生醫玻璃擁有良好之鍶離子釋放性與鹼性磷酸酶活性。


With increasing ages, the ability of absorbing calcium ion in body will decreases, and the calcium ion concentration in the blood will gradually loses. In order to balance the calcium ion concentration in the blood, osteoclasts will release the calcium ions in the bone to the blood for cells to use. When the absorption rate is higher than the formation rate, which significantly reduces bone density, gradually expands the internal holes in the bone, and presents a phenomenon of hollow porosity, making the bone become brittle and weak, and thus, forming osteoporosis.
When people get fracture with osteoporosis, the bone repair is a challenge. Bioactive glass, with good biocompatibility, which can bond with the bone on the surface, and the cells can be attached to gradually regenerate and repair bone defects. As a bone filling material, bioactive glass can be added as an additional element by increasing others properties. Because of the chemical properties and atomic radius of strontium and calcium are quite similar, strontium can also be absorbed by bones. With a good binding ability with the hydroxyapatite in the bone of strontium. It can be synthesized and covered with strontium-doped hydroxyapatite. The location eroded by osteoclasts inhibits the effects of osteoclasts. Strontium can promote bone formation by inhibiting bone resorption and promoting osteoblasts to differentiate into osteoblasts, which can increase bone density and bone strength.
In this study, the characteristics of hydrogen peroxide that can be decomposed into water and oxygen were used as pore-forming agents. Strontium-doped mesoporous bioactive glass powder was prepared by spray pyrolysis method with the addition of 1, 5, and 10 mol% Sr. The strontium release experiment and alkaline phosphatase content experiment were test. The experimental results show that mesoporous bioactive glass with 5 mol% Sr has better strontium ion release and alkaline phosphatase activity.

摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1研究背景 1.2研究動機與目的 第二章 文獻回顧 2.1骨骼 2.1.1人體骨骼 2.1.2骨組織工程 2.1.3磷酸酶 2.2骨質疏鬆症與骨折 2.2.1骨質疏鬆症的成因 2.2.2骨質疏鬆症的評估 2.2.3骨折 2.2.4骨質疏鬆症與骨折的治療 2.2.4.1治療骨質疏鬆症的方法 2.2.4.2骨折的治療 2.2.5鍶 2.3骨填充材料 2.3.1天然高分子聚合物 2.3.2合成高分子聚合物 2.3.3生醫陶瓷 2.3.4聚合物陶瓷複合材料 2.4生醫玻璃 2.4.1生物活性機制 2.4.2介孔生醫玻璃 2.4.2.1聚苯乙烯微球 2.4.2.2高分子界面活性劑 2.4.2.3非界面活性劑 2.4.3介孔生醫玻璃的合成方法 2.4.3.1溶膠-凝膠法 2.4.3.2噴霧熱裂解法 2.4.3.3噴霧乾燥法 第三章 實驗目的與方法 3.1實驗設計 3.2實驗原料 3.3實驗儀器設備 3.4介孔生醫玻璃粉體製備 3.5 體外生物活性試驗 3.5.1人工模擬體液製備 3.5.2體外生物活性測試 3.6 體外鍶離子釋放試驗 3.6.1磷酸鹽緩衝溶液製備 3.6.2鍶離子釋放實驗 3.7細胞毒性試驗 3.7.1培養基製備 3.7.2細胞毒性實驗 3.8鹼性磷酸酶試驗 3.8.1鹼性磷酸酶指示劑製備 3.8.2 0.1% TritonX-100溶液製備 3.8.3鹼性磷酸酶含量檢測 3.9樣品性質及分析方法 3.9.1 X光繞射分析儀 3.9.2場發射掃描式電子顯微鏡 3.9.3場發射穿透式電子顯微鏡 3.9.4氮氣吸/脫附分析儀 3.9.5傅立葉轉紅外線光譜儀 第四章 實驗結果 4.1相結構分析 4.1.1 X光繞射分析儀 4.2微結構分析 4.2.1場發射掃描式電子顯微鏡 4.2.2穿透式電子顯微鏡 4.2.3氮氣吸/脫附分析儀 4.3生物活性實驗 4.3.1 X光繞射分析儀 4.3.2傅立葉轉紅外線光譜儀 4.4鍶離子釋放實驗 4.5細胞存活率測試 4.6鹼性磷酸酶含量測試 第五章 結果討論 5.1微結構對比表面積與生物活性探討 5.2鍶離子釋放量對細胞存活率與鹼性磷酸酶含量探討 第六章 結論 第七章 未來工作 參考文獻

[1] D.o.S. Ministry of the Interior, Bulletin of internal statistics, Ministry of the Interior, Department of Statistics, Taiwan, 2019.
[2] N.d. council, 高齡化時程, 中華民國人口推估(2018至2065年), 2018.
[3] E.N. Marieb, K. Hoehn, Human anatomy & physiology, Pearson Education2007.
[4] J.Z. Yuhui Fu, Orthopedics principles and applications, 1987.
[5] https://pin.it/byves3kgk5xwmc.
[6] B. Clarke, Normal bone anatomy and physiology, Clinical journal of the American Society of Nephrology, 3 (2008) S131-S139.
[7] A. Erlebacher, E.H. Filvaroff, S.E. Gitelman, R. Derynck, Toward a molecular understanding of skeletal development, Cell, 80 (1995) 371-378.
[8] H.K. Väänänen, T. Laitala-Leinonen, Osteoclast lineage and function, Archives of biochemistry and biophysics, 473 (2008) 132-138.
[9] T.D. Rachner, S. Khosla, L.C. Hofbauer, Osteoporosis: now and the future, The Lancet, 377 (2011) 1276-1287.
[10] D. Barford, Molecular mechanisms of theprotein serine/threonine phosphatases, Trends in biochemical sciences, 21 (1996) 407-412.
[11] J.E. Coleman, Structure and mechanism of alkaline phosphatase, Annual review of biophysics and biomolecular structure, 21 (1992) 441-483.
[12] R.B. McComb, G.N. Bowers Jr, S. Posen, Alkaline phosphatase, Springer Science & Business Media2013.
[13] G. Gomori, Microtechnical demonstration of phosphatase in tissue sections, Proceedings of the Society for Experimental Biology and Medicine, 42 (1939) 23-26.
[14] https://epaper.ntuh.gov.tw/health/201708/project_1.html.
[15] M. Sowers, M. Crutchfield, M. Jannausch, S. Updike, G. Corton, A prospective evaluation of bone mineral change in pregnancy, Obstetrics and gynecology, 77 (1991) 841-845.
[16] R. Talmage, S. Stinnett, J. Landwehr, L. Vincent, W. McCartney, Age-related loss of bone mineral density in non-athletic and athletic women, Bone and mineral, 1 (1986) 115-125.
[17] M. Kruger, T. Nell, Bone mineral density in people living with HIV: a narrative review of the literature, AIDS research and therapy, 14 (2017) 35.
[18] B.L. Riggs, L.J. Melton III, Osteoporosis, Raven Press; New York, NY (USA), United States, 1988.
[19] H. Orimo, Y. Hayashi, M. Fukunaga, T. Sone, S. Fujiwara, M. Shiraki, K. Kushida, S. Miyamoto, S. Soen, J. Nishimura, Diagnostic criteria for primary osteoporosis: year 2000 revision, Journal of bone and mineral metabolism, 19 (2001) 331.
[20] Y.-C. Lu, Y.C. Lin, Y.-K. Lin, Y.-J. Liu, K.-H. Chang, P.-U. Chieng, W.P. Chan, Prevalence of osteoporosis and low bone mass in older chinese population based on bone mineral density at multiple skeletal sites, Scientific reports, 6 (2016) 25206.
[21] L.J. Melton III, E.A. Chrischilles, C. Cooper, A.W. Lane, B.L. Riggs, How many women have osteoporosis?, Journal of bone and mineral research, 20 (2005) 886-892.
[22] C.J. Rosen, Postmenopausal osteoporosis, New England Journal of Medicine, 353 (2005) 595-603.
[23] B.L. Riggs, L.J. Melton III, Involutional osteoporosis, New England journal of medicine, 314 (1986) 1676-1686.
[24] J.A. Kanis, D. Black, C. Cooper, P. Dargent, B. Dawson-Hughes, C. De Laet, P. Delmas, J. Eisman, O. Johnell, B. Jonsson, A new approach to the development of assessment guidelines for osteoporosis, Osteoporosis International, 13 (2002) 527.
[25] W.H. Organization, WHO Scientific Group On the Assessment of Osteoporosis at Primary Health Care Level, Brussels, Belgium, 2004.
[26] J.A. Kanis, Diagnosis of osteoporosis and assessment of fracture risk, The Lancet, 359 (2002) 1929-1936.
[27] A. Consensus, Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis, Am J Med, 94 (1993) 646-650.
[28] G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A. Cidade, G.D. Stucky, D.E. Morse, Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture, Nature materials, 4 (2005) 612.
[29] R. Harun, Fracture of Bones; Types, Mechanism, Symptoms.
[30] F. Bonnarens, T.A. Einhorn, Production of a standard closed fracture in laboratory animal bone, Journal of orthopaedic research, 2 (1984) 97-101.
[31] N.S.F.A. Course, Bones, Joints and Muscles, Department of the Navy
Bureau of Medicine and Surgery.
[32] R.B. Gustilo, R. Mendoza, D.N. Williams, Problems in the management of type III (severe) open fractures: a new classification of type III open fractures, The Journal of trauma, 24 (1984) 742-746.
[33] C.S. Li, Fracture and dislocation for the treatment of fractures.
[34] M.W. Cree, A.G. Juby, K.C. Carriere, Mortality and morbidity associated with osteoporosis drug treatment following hip fracture, Osteoporosis International, 14 (2003) 722-727.
[35] L. Gennari, D. Merlotti, F. Valleggi, G. Martini, R. Nuti, Selective estrogen receptor modulators for postmenopausal osteoporosis, Drugs & aging, 24 (2007) 361-379.
[36] B.S. Komm, A.A. Chines, An update on selective estrogen receptor modulators for the prevention and treatment of osteoporosis, Maturitas, 71 (2012) 221-226.
[37] R.L. Prince, M. Smith, I.M. Dick, R.I. Price, P.G. Webb, N.K. Henderson, M.M. Harris, Prevention of postmenopausal osteoporosis: a comparative study of exercise, calcium supplementation, and hormone-replacement therapy, New England journal of medicine, 325 (1991) 1189-1195.
[38] C.G. Slatore, J.W. Chien, D.H. Au, J.A. Satia, E. White, Lung cancer and hormone replacement therapy: association in the vitamins and lifestyle study, Journal of Clinical Oncology, 28 (2010) 1540.
[39] M.F. Faienza, M. Chiarito, G. D’amato, G. Colaianni, S. Colucci, M. Grano, G. Brunetti, Monoclonal antibodies for treating osteoporosis, Expert opinion on biological therapy, 18 (2018) 149-157.
[40] H. Fleisch, Bisphosphonates, Drugs, 42 (1991) 919-944.
[41] H. Fleisch, A. Reszka, G. Rodan, M. Rogers, Bisphosphonates: mechanisms of action, Principles of bone biology, Elsevier2002, pp. 1361-XLIII.
[42] N.B. Watts, D.L. Diab, Long-term use of bisphosphonates in osteoporosis, The Journal of Clinical Endocrinology & Metabolism, 95 (2010) 1555-1565.
[43] R.M. Neer, C.D. Arnaud, J.R. Zanchetta, R. Prince, G.A. Gaich, J.-Y. Reginster, A.B. Hodsman, E.F. Eriksen, S. Ish-Shalom, H.K. Genant, Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis, New England journal of medicine, 344 (2001) 1434-1441.
[44] J.S. Finkelstein, A. Hayes, J.L. Hunzelman, J.J. Wyland, H. Lee, R.M. Neer, The effects of parathyroid hormone, alendronate, or both in men with osteoporosis, New England Journal of Medicine, 349 (2003) 1216-1226.
[45] L.-R. Chen, N.-Y. Ko, K.-H. Chen, Medical treatment for osteoporosis: From molecular to clinical opinions, International journal of molecular sciences, 20 (2019) 2213.
[46] E. Segal, A. Tamir, S. Ish-Shalom, Compliance of osteoporotic patients with different treatment regimens, Imaj-Ramat Gan-, 5 (2003) 859-862.
[47] B.L. Lai, Research and Clinical Application of Bone Tissue Engineering, Chang Gung Memorial Hospital, Linkou, 2017.
[48] A. Van Heest, M. Swiontkowski, Bone-graft substitutes, The Lancet, 353 (1999) S28-S29.
[49] C.G. Finkemeier, Bone-grafting and bone-graft substitutes, JBJS, 84 (2002) 454-464.
[50] M.R. Urist, B.T. O'Connor, R.G. Burwell, Bone grafts, derivatives, and substitutes, Butterworth-Heinemann1994.
[51] P.V. Giannoudis, H. Dinopoulos, E. Tsiridis, Bone substitutes: an update, Injury, 36 (2005) S20-S27.
[52] R.S. Yang, Bone Transplantation, Present and Before, National Taiwan University of Hospital, Department of Orthopedic Surgery.
[53] W.-C. Liu, C.-C. Hu, Y.-Y. Tseng, R. Sakthivel, K.-S. Fan, A.-N. Wang, Y.-M. Wang, R.-J. Chung, Study on strontium doped tricalcium silicate synthesized through sol-gel process, Materials Science and Engineering: C, 108 (2020) 110431.
[54] S. Dahl, P. Allain, P. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P. Delmas, C. Christiansen, Incorporation and distribution of strontium in bone, Bone, 28 (2001) 446-453.
[55] M. Pilmane, K. Salma-Ancane, D. Loca, J. Locs, L. Berzina-Cimdina, Strontium and strontium ranelate: Historical review of some of their functions, Materials Science and Engineering: C, 78 (2017) 1222-1230.
[56] P.J. Marie, Strontium as therapy for osteoporosis, Current opinion in pharmacology, 5 (2005) 633-636.
[57] E. Storey, Intermittent bone changes and multiple cartilage defects in chronic strontium rickets in rats, The Journal of bone and joint surgery. British volume, 44 (1962) 194-208.
[58] L. Mao, L. Xia, J. Chang, J. Liu, L. Jiang, C. Wu, B. Fang, The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration, Acta biomaterialia, 61 (2017) 217-232.
[59] M.L. Huggins, The structure of collagen, Proceedings of the National Academy of Sciences of the United States of America, 43 (1957) 209.
[60] H.J. Chung, D.H. Go, J.W. Bae, I.K. Jung, J.W. Lee, K.D. Park, Synthesis and characterization of Pluronic® grafted chitosan copolymer as a novel injectable biomaterial, Current Applied Physics, 5 (2005) 485-488.
[61] J. Venkatesan, S.-K. Kim, Chitosan composites for bone tissue engineering—an overview, Marine drugs, 8 (2010) 2252-2266.
[62] J.L. West, J.A. Hubbell, Polymeric biomaterials with degradation sites for proteases involved in cell migration, Macromolecules, 32 (1999) 241-244.
[63] A. Boger, M. Bohner, P. Heini, S. Verrier, E. Schneider, Properties of an injectable low modulus PMMA bone cement for osteoporotic bone, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 86 (2008) 474-482.
[64] L. Linder, Reaction of bone to the acute chemical trauma of bone cement, The Journal of bone and joint surgery. American volume, 59 (1977) 82-87.
[65] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Progress in polymer science, 32 (2007) 762-798.
[66] J.Y. Kim, D.-W. Cho, Blended PCL/PLGA scaffold fabrication using multi-head deposition system, Microelectronic Engineering, 86 (2009) 1447-1450.
[67] S.V. Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials, 31 (2010) 1465-1485.
[68] S. Hulbert, L. Hench, D. Forbers, L. Bowman, History of bioceramics, Ceramics international, 8 (1982) 131-140.
[69] G.P. Jayaswal, S. Dange, A. Khalikar, Bioceramic in dental implants: A review, The Journal of Indian Prosthodontic Society, 10 (2010) 8-12.
[70] M. Manzano, M. Vallet-Regí, Revisiting bioceramics: bone regenerative and local drug delivery systems, Progress in Solid State Chemistry, 40 (2012) 17-30.
[71] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, 74 (1991) 1487-1510.
[72] B. Lei, X. Chen, Y. Wang, N. Zhao, C. Du, L. Fang, Synthesis and bioactive properties of macroporous nanoscale SiO2–CaO–P2O5 bioactive glass, Journal of Non-Crystalline Solids, 355 (2009) 2678-2681.
[73] M. Vallet-Regí, Mesoporous silica nanoparticles: their projection in nanomedicine, ISRN Materials Science, 2012 (2012).
[74] A. Clark Jr, C. Pantano Jr, L. Hench, Auger spectroscopic analysis of bioglass corrosion films, Journal of the American Ceramic Society, 59 (1976) 37-39.
[75] D. Sanders, L. Hench, Mechanisms of glass corrosion, Journal of the American Ceramic Society, 56 (1973) 373-377.
[76] M. Dreßler, F. Dombrowski, U. Simon, J. Börnstein, V.-D. Hodoroaba, M. Feigl, S. Grunow, R. Gildenhaar, M. Neumann, Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics, Journal of the European Ceramic Society, 31 (2011) 523-529.
[77] N. Ignjatović, S. Tomić, M. Dakić, M. Miljković, M. Plavšić, D. Uskoković, Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials, Biomaterials, 20 (1999) 809-816.
[78] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
[79] X. Chen, B. Lei, Y. Wang, N. Zhao, Morphological control and in vitro bioactivity of nanoscale bioactive glasses, Journal of Non-Crystalline Solids, 355 (2009) 791-796.
[80] W. June, An introduction to bioceramics, World scientific1993.
[81] X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao, Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities, Angewandte Chemie International Edition, 43 (2004) 5980-5984.
[82] I. Izquierdo-Barba, L. Ruiz-González, J.C. Doadrio, J.M. González-Calbet, M. Vallet-Regí, Tissue regeneration: a new property of mesoporous materials, Solid state sciences, 7 (2005) 983-989.
[83] C. Wu, J. Chang, Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application, Interface Focus, 2 (2012) 292-306.
[84] P. Yan, J. Wang, J. Ou, Z. Li, Z. Lei, S. Yang, Synthesis and characterization of three-dimensional ordered mesoporous–macroporous bioactive glass, Materials Letters, 64 (2010) 2544-2547.
[85] L. Ji, Y. Si, H. Liu, X. Song, W. Zhu, A. Zhu, Application of orthogonal experimental design in synthesis of mesoporous bioactive glass, Microporous and Mesoporous Materials, 184 (2014) 122-126.
[86] W. Xia, J. Chang, Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system, Journal of Controlled Release, 110 (2006) 522-530.
[87] K.S. Lee, J.H. Lee, Hybrid Enhanced Oil Recovery Using Smart Waterflooding, Gulf Professional Publishing2019.
[88] https://www.kruss-scientific.com/services/education-theory/glossary/cmc/.
[89] B. Lei, X. Chen, Y. Wang, N. Zhao, C. Du, L. Zhang, Acetic acid derived mesoporous bioactive glasses with an enhanced in vitro bioactivity, Journal of Non-Crystalline Solids, 355 (2009) 2583-2587.
[90] B.-J. Hong, S.-J. Shih, Novel pore-forming agent to prepare of mesoporous bioactive glass using one-step spray pyrolysis, Ceramics International, 43 (2017) S771-S775.
[91] L. Zhang, S. Jahanshahi, Review and modeling of viscosity of silicate melts: Part I. Viscosity of binary and ternary silicates containing CaO, MgO, and MnO, Metallurgical and materials transactions B, 29 (1998) 177-186.
[92] S.-J. Shih, Y.-J. Chou, C.-Y. Chen, C.-K. Lin, One-step synthesis and characterization of nanosized bioactive glass, J. Med. Biol. Eng, 34 (2014) 18-23.
[93] S.-J. Shih, Y.-C. Lin, L. Valentino Posma Panjaitan, D. Rahayu Meyla Sari, The correlation of surfactant concentrations on the properties of mesoporous bioactive glass, Materials, 9 (2016) 58.
[94] R. Vehring, Pharmaceutical particle engineering via spray drying, Pharmaceutical research, 25 (2008) 999-1022.
[95] A. Sosnik, K.P. Seremeta, Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers, Advances in colloid and interface science, 223 (2015) 40-54.
[96] H.S. An, K.S. Lim, D.J. Kwak, B.S. You, S.H. Lee, Device for reducing pressure loss of cyclone dust collector, Google Patents, 2004.
[97] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3, Journal of biomedical materials research, 24 (1990) 721-734.
[98] M. O’donnell, R. Hill, Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration, Acta Biomaterialia, 6 (2010) 2382-2385.
[99] A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceramics International, 43 (2017) 14880-14890.
[100] W.L. Tzeng, S.J. Shih, Template‐Free Synthesis of Hollow Porous Strontium Titanate Particles, Journal of the American Ceramic Society, 98 (2015) 386-391.

QR CODE