簡易檢索 / 詳目顯示

研究生: 鄭紹峻
Shao-Chun Cheng
論文名稱: 應用於4G LTE智慧型手機上天線微型化之負阻抗轉換器
Negative Impedance Converter of Mobile Phone Antenna Minimization for 4G Long Term Evolution
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 邱弘緯
Hung-Wei Chiu
汪濤
Tao Wang
姚嘉瑜
Chia-Yu Yao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 84
中文關鍵詞: 負阻抗電路Non-Foster匹配4G LTE頻段頻率比較
外文關鍵詞: Negative impedance circuit, Non-Foster matching, 4G LTE frequency band, Frequency comparison
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文包含兩個議題。第一個議題探討負阻抗轉換器電路,第二個議題探討頻率比較器。微型化天線在近幾年被廣泛的應用於特高頻(Ultra high frequency, UHF),然而,如果使用被動Foster阻抗匹配網路來做阻抗匹配的話,天線的有效頻寬(efficiency-bandwidth)將會被限制。因此,本研究第一個議題欲透過負阻抗轉換器電路積體化解決上述問題,並分成兩個部分分析負阻抗轉換器電路。
    第一部分設計出三種不同負載的負阻抗換器電路,適用頻帶為400MHz ~ 800MHz,使用UMC 0.18 µm 1P6M CMOS製程,此階段主要驗證負阻抗轉換器電路設計上的流程,並且分析負載為電感、電容、電感並聯電容的阻抗(Z)和導納(Y)特性,比較模擬與量測的結果,負阻抗轉換器電路晶片面積為0.998mm2(1.928 mm×0.518 mm),消耗功率為6mW。
    第二部分使用TSMC 0.18 µm 1P6M CMOS製程,證明負阻抗轉換器電路與天線結合有效達成增加天線頻寬,並且設計出兩種不同負阻抗轉換器版本與兩種不同尺寸的天線個別結合(Case 1 以及 Case 2),適用於4G LTE(Long Term Evolution)頻段中的700MHz(Band28)。在負阻抗轉換器與天線結合後模擬結果,Case1情況天線頻寬為740MHz ~ 850MHz(14%),Case2情況天線頻寬為690M ~ 780MHz(12.4%),負阻抗轉換器晶片面積為1.174mm2(0.908 mm×1.293 mm),消耗功率為11.04mW。
    本研究第二個議題探討頻率比較器電路,使用UMC 0.18 µm 1P6M CMOS製程,頻率比較器電路包含二階低通濾波器、全波整流器、電壓比較器電路所構成。此頻率比較器適用頻率為300MHz–1GHz,解析度最大達到0.88%,頻率比較器晶片面積為0.497mm2(0.71 mm×0.7 mm),消耗功率為4.42mW。


    The present work aims to address the issues of negative impedance converter circuit and frequency comparator. With respect to the negative impedance converter circuit,
    in recent years; Antenna Miniaturization has been widely used in the UHF (Ultra high frequency, UHF). However, if you use the passive foster matching network to do the impedance matching, the effective bandwidth of the antenna (efficiency-bandwidth) will be limited. To tackle this problem, the negative impedance converter was integrated and the results of such integration are divided into two parts for further analysis.
    The first part contains the design of negative impedance converter circuit with three different loads. Suitable for 400MHz ~ 800MHz frequency range, this circuit used UMC 0.18 μm 1P6M CMOS technology. This part verified the design flow of the negative impedance converter circuit, analyzing properties of Impedance (Z) and Admittance (Y) with load of inductance, capacitance and inductance shunt capacitance. Furthermore, we compared the simulation results with the measurement ones. The negative impedance converter circuit chip area is 0.998 mm2 (1.928 mm×0.518 mm) and its power consumption is 6 mW.
    The second part used TSMC 0.18 μm 1P6M CMOS process to demonstrate that the combination between antenna and negative impedance converter circuit can increase antenna bandwidth. To achieve this goal, two different versions of a negative impedance converter was designed and implemented with two different antenna sizes respectively (Case 1 and Case 2), which are suitable for 4G LTE (Long Term Evolution) frequency bands in 700MHz (Band28). As to the post-simulation results, in Case 1, Antenna bandwidth is 740MHz ~ 850MHz (14%). In Case 2, Antenna bandwidth is 690MHz ~ 780MHz (12.4%). The negative impedance converter circuit chip area is 1.174mm2(0.908 mm×1.293 mm) and its power consumption is 11.04 mW.
    The second issue discussed the frequency comparator circuit. This circuit used UMC 0.18 μm 1P6M CMOS technology, which contained a second order low pass filter, a rectifier and a comparator. This frequency comparator is suitable for frequency of 300MHz ~ 1GHz with maximum resolution reaching 0.88%. The negative impedance converter circuit chip area is 0.497mm2(0.71 mm×0.7 mm) and its power consumption is 4.42 mW.

    摘要 i Abstract iii 誌謝 iv 目錄 v 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1.1 簡介 1 1.2 章節概要 3 第二章 負阻抗轉換器 4 2.1 簡介 4 2.2 負阻抗轉換器電路架構 5 2.2.1 負阻抗轉換器負載為電感 7 2.2.2 負阻抗轉換器負載為電容 10 2.2.3 負阻抗轉換器負載為電感與電容 13 2.2.4 負阻抗轉換器應用於天線上 14 2.3 天線介紹 15 2.4 模擬結果 17 2.4.1負阻抗轉換器負載為電感 17 2.4.2負阻抗轉換器負載為電容 20 2.4.3負阻抗轉換器負載為電感與電容 22 2.4.4應用於天線上之負阻抗轉換器 23 2.4.4-1 負阻抗轉換器負載為電感與電容 23 2.4.4-2 天線模擬 25 2.4.4-3負阻抗轉換器與天線結合 33 第三章 負阻抗轉換器晶片佈局與量測 39 3.1簡介 39 3.2晶片佈局 39 3.3量測 42 3.3.1 量測環境 42 3.3.2 負阻轉抗轉換器 43 3.3.2-1 負阻抗轉換器負載為電感 46 3.3.2-2 負阻抗轉換器負載為電容 48 3.3.2-3 負阻抗轉換器負載為電感與電容 50 3.4結論 52 第四章 頻率比較器 53 4.1 簡介 53 4.2 頻率比較器系統架構 54 4.2.1 二階低通濾波器 55 4.2.2 全波整流器 60 4.2.3 軌對軌輸入級電壓比較器 61 4.3 模擬結果 62 4.3.1 轉導放大器 62 4.3.2 二階低通濾波器 63 4.3.3 全波整流器 64 4.3.4 軌對軌輸入級電壓比較器 66 4.3.5 頻率比較器 66 4.4晶片佈局 68 4.5量測 70 4.5.1 量測環境 70 4.5.2 頻率比較器 71 4.6 結論 77 第五章 總結與未來展望 79 參考文獻 80 附錄 83

    [1] J. T. Aberle, “Two-port representation of an antenna with application to non-Foster matching networks, ” IEEE Transactions on Antennas and Propagation, vol. 56, no. 5, pp. 1218-1222, May 2008.
    [2] C. R. White, J. S. Colburn and R. D. Nagele, “A Non-Foster VHF monopole antenna, ” IEEE Antennas Wireless Propag. Lett., vol. 11, pp.584 -587, 2012.
    [3] Church, J., Chieh, J.-C.S., Lu Xu, Rockway, J.D., and Arceo, D., “UHF Electrically Small Box Cage Loop Antenna With an Embedded Non-Foster Load, ” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1329-1332, 2014.
    [4] S. E. Sussman-Fort and R. M. Rudish “Non-Foster impedance matching of electrically-small antennas, ” IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2230 -2241, 2009
    [5] Ning Zhu, and Ziolkowski, R.W., “Broad-bandwidth, Electrically Small Antenna Augmented With an Internal Non-Foster Element,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1116 – 1120, 2012.
    [6] M. C. Tang, et al., “Augmenting a Modified Egyptian Axe Dipole Antenna With Non-Foster Elements to Enlarge Its Directivity Bandwidth, ” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 421-424, 2013.
    [7] S. Saadat , M. Adnan , H. Mosallaei and E. Afshari “Composite metamaterial and metasurface integrated with non-foster active circuit elements: A bandwidth-enhancement investigation,” IEEE Trans. Antennas. Propag., vol. 61, no. 3, pp.1210 -1218, 2013.
    [8] C. R.White, J.W.May, and J. S. Colburn, “A variable negative-inductance integrated circuit at UHF frequencies,” IEEE Microw. Wireless Compon. Lett., 2012, to be published.
    [9] H. Mirzaei G. V. Eleftheriades, “A resonant Printed Monopole Antenna With an Embedded Non-Foster Matching Network, ” IEEE Trans.Antennas Propag.,vol. 61,no. 11,pp. 5363-5371, Nove.2013
    [10] M. Z. Straayer and M. H. Perrott, “A 12-bit, 10 MHz bandwidth, continuous-time delta-sigma ADC with a 5-bit, 950 MS/s VCO-based quantizer,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 805–814, Apr. 2008.
    [11] B. Ginsburg and A. Chandrakasan, “500 MS/s 5 bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739–747, Apr. 2007.
    [12] Jaewook Kim, Tae-Kwang Jang, Young-Gyu Yoon and SeongHwan Cho, “Analysis and design of voltage-controlled oscillator based analog-to-digital converter,” IEEE Trans. On Circuits and Systems I, vol. 57, no. 1, Jan. 2010.
    [13] 張書維, “應用於軟體無限電之類比基頻電路”, 國立台灣科技大學電機所碩士論文, Nov, 2010.
    [14] 許嘉祥, “一種減低彎折差動傳輸線共模雜訊之新穎設計”, 國立中山大學通訊所碩士論文, July, 2012.
    [15] El-Halwagy, W.; Dessouky, M.; El-Ghitani, H, “A programmable 8.3mW,0.5-100MHzBW,88-3-48.1dB SNDR VCO-basedADC with switched capacitor linearization, ” Electron Devices and Solid State Circuit (EDSSC), 2013 IEEE International Conference on, On page(s): 1 - 2
    [16] Hamilton, J.; Shouli Yan; Viswanathan, TR.; , “An uncalibrated 2MHz,6mW, 63.5dB SNDR discrete-time input YCO-based L1L ADC,” CICC,2012 JEEE, vol., no., pp.I-4, 9-12 Sept. 2012
    [17] J. Daniels and M. Streyaert, “All-digital differential VCO-based A/D conversion, ” in Proc.ISCAS, 2010, pp. lOSS-lOSS.
    [18] X. L. Zhang, J. Z. Chen, Z. T. Xu, Q. Yu, and Y. Liu “A VCO based continuous time delta sigma ADC with 10MHz BW 55dB SNR and 42dB SNDR, ” Electron Devices and Solid State Circuit (EDSSC), 2012 IEEE International Conference on, On page(s): 1 - 2
    [19] C. R.White, J.W.May, and J. S. Colburn, “A variable negative-inductance integrated circuit at UHF frequencies,” IEEE Microw. Wireless Compon. Lett., 2012, to be published.
    [20] Covington, John M.C. “Measurement of a CMOS Negative Inductor forWideband Non-Foster Metamaterials,” SOUTHEASTCON 2014, IEEE.
    [21] Kshatri, V.S. “Comparison of CMOS current conveyor circuits for non-Foster applications,” Southeastcon, 2013 Proceedings of IEEE.
    [22] Covington, John M.C. “A cross-coupled cmos negative capacitor for wideband metamaterial applications, ” SOUTHEASTCON 2014, IEEE.
    [23] MAHFOOZUR REHMAN AND MUSLIM T. AHMED, “An Active Frequency Meter,” IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. IM-30, NO. 2, JUNE 1981.
    [24] Abdul Shakoor Nizamani. “A Novel Frequency Comparator: Applications in Frequency Meters and in Difference Clocks for Generator Frequency Error Monitors , ” IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 45, NO. 1, FEBRUARY 1996 .
    [25] Ksharti, Varun Covington,John M.C.Weldon, Thoms P. “Compensation of frequency depedent parasitic resistance in a CMOS linvill negative inductor ,” SOUTHEASTCON 2014, IEEE.
    [26] Mrkovic B, Aswnbrener, M. “The simple CMOS negative capacitance with improved frequency response,” 2012 Proceedings of the35th international Convention.

    無法下載圖示 全文公開日期 2020/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE