簡易檢索 / 詳目顯示

研究生: 余冠佑
Kuan-Yu Yu
論文名稱: 基於IEEE 1584-2018之工業配電系統弧光閃絡危害分析
Arc Flash Hazard Analysis for Industry Distribution Systems Based on IEEE 1584-2018
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 蕭弘清
Horng-Ching Hsiao
許炎豐
Yen-Feng Hsu
楊明達
Ming-Ta Yang
辜志承
Jyh-Cherng Gu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 153
中文關鍵詞: 弧光閃絡弧光閃絡分析IEEE 1584-2018弧光閃絡危害評估
外文關鍵詞: IEEE 1584-2018
相關次數: 點閱:175下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

工業配電系統之開關箱內部發生弧光閃絡時,會伴隨高熱、強光、高分貝巨響及壓力等物理現象,對人員及設備會造成莫大之危害。為了評估其危險等級,IEEE經過多次實驗歸納出一套弧光閃絡分析模型,可於評估後依據危險等級實施相對應之防護措施。IEEE首度在2002年建立IEEE 1584標準。經過多年的實際驗證與經驗積累後,在2018年發表了更新版IEEE 1584,其內容已與舊版大相逕庭,弧光閃絡分析模型重新推導,並調整了弧光分析所需之各項參數。為比較新舊版模型之差異,本論文利用分析軟體對針弧光電流、弧光能量及弧光保護邊界模型,測試各參數變化,如開關箱尺寸、導體配置等因素對分析結果的影響程度。結果顯示電壓範圍為601V~15kV之開關箱發生弧光閃絡時,新版弧光能量模型下會比舊版模型有更大的弧光能量,而弧光保護邊界則大幅減少;電壓範圍208V~600V之開關箱的弧光能量、弧光保護邊界與舊版相比則相差無幾,導體配置方式中則以HCB相對於其他配置方式會有更大的弧光能量。


In the industry power systems, the arc flash fault inside the panelboard phisicially accompanied with extra high heat, strong light, loudly decibel noise and heavily pressure, will endanger people and equipment nearby. To evaluate the risk degree of each panelboard the IEEE society setup an analytical arc flash calculation model. Moreover, it also gives a countermeasure according to the degree of risk. The first edition(old) of standard about arc flash evaluation IEEE 1584 was proposed in 2002. After years of review and improve, a new edition of IEEE 1584 announces in 2018. It shows much revise in arc flash calculation model than 2002 edition. To test the differences in arc flash model including arc current, incident energy, and arc protection boundary, a software is introduced. In addition, the various of parameters such as panelboard size and conductor configuration may impact the final results also being enhensively investigated. The results show that when the arc flash fault is in 601V~15kV level panelbosrd, new edition model will present much more incident energy and far less protection boundary than old edition. Furthermore, when the arc flash fault is in 208V~600V level panelbosrd, no matter the approach is using new edition model or old edition model there are no obviously difference in arc flash risk assessment. Regarding to the configuration type of conductor inside the panelboard, HCB will present the highest incident energy than other types.

目錄 中文摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.3 研究方法 5 1.4 論文架構 5 第二章 電力系統之弧光閃絡事故 7 2.1 前言 7 2.2 開關箱之弧光閃絡事故 7 2.2.1 開關箱弧光閃絡之原因 7 2.2.2 開關箱弧光閃絡之影響 8 2.3 開關箱弧光閃絡之相關國際標準 11 2.3.1 OSHA CFR 29 11 2.3.2 NEC 12 2.3.3 NFPA 70E 13 2.3.4 IEEE 1584 15 2.5 本章小結 15 第三章 弧光閃絡分析方法 17 3.1 前言 17 3.2 弧光閃絡分析流程 17 3.3 導體配置 21 3.4 弧光電流之決定 24 3.5 開關箱校正因數 27 3.5.1 開關箱類型之分類 27 3.5.2 等效高度與等效寬度之決定 28 3.5.3 開關箱校正因數之決定 30 3.6 弧光能量之決定 31 3.7 弧光保護邊界之決定 36 3.8 弧光電流校正因數之決定 38 3.9 弧光閃絡分析模型應用 39 3.10 本章小結 42 第四章 降低弧光閃絡事故危害之方法 44 4.1 前言 44 4.2 減少弧光燃燒時間 44 4.2.1 調整保護協調 44 4.2.2 調整瞬時跳脫設定 48 4.2.3 區域選擇性閉鎖 49 4.2.4 差動電驛 52 4.2.5 維護切換開關 52 4.2.6 弧光保護電驛 53 4.2.7 弧光消除裝置 56 4.2.8 快速接地開關 58 4.3 限制故障電流 59 4.3.1 雙主變設計 60 4.3.2 高阻抗變壓器 60 4.3.3 限流型熔絲 61 4.3.4 限流電抗器 61 4.4 耐電弧配電箱之設計 62 4.4.1 改變氣爆方向 62 4.4.2 建立弧光通道 63 4.4.3 裝設弧光能量吸收器 64 4.5 遠端控制開關箱 65 4.5.1 遠端操控系統 65 4.5.2 遠端開關設備 67 4.6 本章小結 67 第五章 IEEE 1584新舊版差異及參數選用 70 5.1 前言 70 5.2 模型差異 70 5.2.1 模型範圍差異 70 5.2.2 弧光電流模型差異 72 5.2.3 弧光能量模型差異 74 5.2.4 弧光保護邊界模型差異 76 5.3 弧光電流校正因數差異 78 5.4 弧光閃絡分析參數選用 80 5.4.1 導體配置 80 5.4.2 開關箱尺寸 82 5.4.3 弧光燃燒時間 82 5.4.4 低壓分析限制 83 5.5 本章小結 83 第六章 範例系統弧光閃絡分析 84 6.1 前言 84 6.2 弧光閃絡分析流程 84 6.3 範例系統 98 6.3.1 系統單線圖 98 6.3.2 系統參數 101 6.4 範例系統之弧光閃絡分析 106 6.4.1 分析方式 106 6.4.2 相關參數之設定 108 6.4.3 計算弧光燃燒時間 109 6.4.4 分析結果 113 6.5 分析結果之應用 115 6.5.1 弧光閃絡警告標籤之產生 115 6.5.2 個人防護具之選用 116 6.6 新舊版參數差異結果之比較 118 6.6.1 弧光能量 118 6.6.2 弧光保護邊界 120 6.6.3 個人防護具之選用 121 6.6.4 導體配置 122 6.6.5 開關箱尺寸 123 6.7 本章小結 130 第七章 結論與未來研究方向 132 7.1 結論 132 7.2 未來研究方向 133 參考文獻 135

參考文獻
[1] Johnson and Dave, Arc Flash Statistics, ISHN, May 31, 2013 https://www.ishn.com/articles/96001-arc-flash-statistics
[2] B. R. Baliga and E. Pfender, "Fire safety related testing of electric cable insulation materials," Univ. Minnesota, Inst. Technol. Res. Rep., Sept. 1975.
[3] Craig M. Wellman, "OSHA Arc-Flash Injury Data Analysis", in IEEE IAS Electrical Safety Workshop, 2012.
[4] "IEEE Guide for Performing Arc-Flash Hazard Calculations," IEEE Std 1584, 2018.
[5] R. H. Kaufmann, "Arcing Fault Protection for Low-Voltage Power Distribution Systems~nature of the Problem," in Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 79, 1960, pp. 160-165.
[6] Lee, R. H., "The Other Electrical Hazard: Electrical Arc Blast Burns, " in IEEE Transactions on Industry Applications, vol. IA-18, no. 3, May 1982, pp. 246–251.
[7] Artz , Moncrief and Pruitt, "Burns," Philadelphia, London and Toronto: W. B. Saunders Co., 1979.
[8] T. Neal, A. H. Bingham, and R. L. Doughty, "Protective Clothing Guidelines for Electric Arc Exposure, " in IEEE PCIC, 1996, pp. 298–281.
[9] R. L. Doughty, T. E. Neal, T. A. Dear, and A. H. Bingham, "Testing Update on Protective Clothing & Equipment for Electric Arc Exposure, " in IEEE PCIC, 1997, pp. 323-336.
[10] Doughty, R. L., T. E. Neal, and H. L. Floyd, "Predicting Incident Energy to Better Manage the Electric Arc Hazard on 600-V Power Distribution Systems, " in IEEE Transactions on Industry Applications, vol. 36, 2000, pp. 257-269.
[11] Wilkins, R., M. Lang, and M. Allison, "Effect of Insulating Barriers in Arc Flash Testing," in IEEE Transactions on Industry Applications, vol. 44, 2008, pp. 1354-1359.
[12] Mikhail Golovkov, "Arc Flash Testing Update: Effect of Arc Electrode Geometry and Distance on Cotton Shirt Ignition," in 2014 IEEE IAS Electrical Safety Workshop, 2014.
[13] Afshin Majd, "An Improved Arc Flash Energy Calculation Method
and Its Application," in IEEE Transactions on Industry Applications, Vol. 53, 2017, pp. 5062-5067.
[14] Lang, M. and K. Jones, "Investigation of Factors Affecting the Sustainability of Arcs Below 250 V," in IEEE Transactions on Industry Applications, vol. 48, 2012, pp. 784–793.
[15] Marcia L. Eblen, Tom A. Short, "Low Voltage ARC Sustainability," in IEEE Transactions on Industry Applications, vol. 54, 2018, pp. 2934-2946.
[16] M. Lang, K. Jones, and T. E. Neal, "Impact of Arc Flash Events with Outward Convective Flows on Worker Protection Strategies," in IEEE Transactions on Industry Applications, vol. 47, 2011, pp. 1597–1604.
[17] 賴浩鋒,「開關箱弧光閃絡分析與改善策略之研究」,碩士論文,國立臺灣科技大學,2014年。
[18] 陳金龍,「配電盤弧光閃絡保護與危險等級分析之研究」,碩士學位論文,國立台灣科技大學,2009年。
[19] 吳志勇,「電弧光保護在電力系統的應用」,四川電力技術第32卷,第4期,第49-68頁,2009年。
[20] 辜志承,「弧光保護與過電流電驛之整合」,電機月刊第13卷,第3期,第171-178頁,2003年。
[21] H. Picard, J. Verstraten, R. Luchtenberg, "Practical approaches to mitigating Arc Flash exposure in Europe," in Proceedings of Petroleum and Chemical Industry Conference Europe (PCIC Europe), Istanbul, 2013, pp. 1-10.
[22] 辜志承,「弧光保護與過電流電驛之整合」,電機月刊第13卷,第3期,第171-178頁,2003年。
[23] J. Vico, P. Parikh, D. Allcock, R. Luna, "A Novel Approach for Arc-flash Detection and Mitigation at the Speed of Light and Sound," in Protective Relay Engineers, College Station, 2013, pp. 227-233.
[24] B. Johnson, "Development of Standards for MV Switchgear Rated for Arc Protection," in Electrical Arc Flash Conference, 2013.
[25] 徐明定,「電弧防護裝備選用實務」,台電公司工安環保處,2009年。
[26] Institute of Electrical and Electronics Engineers, IEEE.
[27] "Guide for Performing Arc-Flash Hazard Calculations, IEEE Std 1584, " 2002.
[28] "Guide for Performing Arc Flash Hazard Calculations-Amendment 1, IEEE Std. 1584a," 2004.
[29] "Guide for Performing Arc Flash Hazard Calculations-Amendment 2: Changes to Clause 4, IEEE Std. 1584b," 2011.
[30] "IEEE Guide for the Specification of Scope and Deliverable Requirements for an Arc Flash Hazard Calculation Study in Accordance with IEEE Std 1584," IEEE Std. 1584.1, 2013.
[31] Occupational Safety and Health Administration, OSHA.
[32] J. E. Maida, "Arc Flash Overview and Qualifications," Maida Engineering Inc., 2009.
[33] "Arc Flash Hazard Solutions," Mersen Electrical Power, 2011.
[34] "How to Interpret OSHA Requirements for Electrical Hazard Assessments," PowerStudies Inc.
[35] "Common Myths and Misunderstanding about Arc-Flash Hazard Assessments," PowerStudies Inc.
[36] Dennis K. Neitzel, "Electrical Safety Update—OSHA 29 CFR 1910.269 and NFPA 70E-2015 Revisions," IEEE Transactions on Industry Applications, Vol. 52, 2016, pp. 2753–2758.
[37] "Department of Labor, Occupational Safety and Health Administration, 29 CFR Part 1910," Federal Register, Vol. 81, 2016.
[38] "NFPA 70E: What Does it Mean to You?" EHSToday, 2006.
[39] "Standard for Electrical Safety in the Workplace, NFPA 70E," 2012.
[40] "Standard for Electrical Safety in the Workplace, NFPA 70E," 2018.
[41] Andrew Johnson, "NFPA 70E 2018 Changes and Key Elements," 2018.
[42] "Overview: NFPA 70E 2018 Changes," Brady Worldwide Inc., 2017.
[43] "Top 10 Changes to 2018 NFPA 70E Safety Standards for Electricians," Fluke Corporation, 2018.
[44] National Fire Protection Association, NFPA.
[45] Wikipedia:
https://en.wikipedia.org/wiki/National_Electrical_Code, 2016.
[46] "Arc Flash Hazard Labels," Siemens Industry, Inc., 2012.
[47] "2014 National Electrical Code Changes in Overcurrent and Surge Protection," Mersen Electrical Power, 2013.
[48] "NFPA 70~National Electrical Code," 2017.
[49] "Analysis of Changes, 2017 NEC," IAEI, 2015.
[50] Michael J. Johnston, "A Look at the 2017 NEC Significant Changes," 2017.
[51] J. Holbach, "Mitigation of Arc Flash Hazard by Using Protection Solution," in Protective Relay Engineers Annual Conference, College Station, 2007, pp. 239-250.
[52] "SEL Arc-Flash Solutions~Schweitzer Engineering Laboratories," Schweitzer Engineering Laboratories Inc., 2017-2018.
[53] C. G. Walker, "Arc-Flash Energy Reduction Techniques: Zone-Selective Interlocking and Energy-Reducing Maintenance Switching," in IEEE Transactions on Industry Applications, 2013, pp. 814-824.
[54] "DET~1004 Application and Technical Guide Energy-Reducing Maintenance Switch," GE Energy Connections Inn., 2017.
[55] "VAMP 221, Operation and Configuration Instructions Technical Description," Schneider Electric.
[56] "AQ 101, Instruction Manual," Arcteq, May 2012.
[57] Robert J. Burns, "Current Limiting Arc Flash Quenching System for Improved Incident Energy Reduction," 2018.
[58] "AQ-1000 Instruction Manual~1.3 EN," Arcteq, 2018.
[59] "Arc Quenching Low Voltage Switchgear Design Guide," Eaton, 2019.
[60] B. Johnson, "Development of Standards for MV Switchgear Rated for Arc Protection," Electrical Arc Flash Conference, 2013.
[61] Ken Box, "NEC 2017 : Arc Incident Energy Reductionarticle 240.87, " 2017.
[62] T. Hazel, "Limiting Short-Circuit Currents in Medium-Voltage Applications," Schneider Electric.
[63] "Current Limiting Reactor," Circuit Globe.
https://circuitglobe.com/current-limiting-reactor.html
[64] B. Bouman, E. Alferink, M. Lusing, J. Verstraten, "A view on internal arc testing of Low Voltage Switchgear," in Proceedings of Petroleum and Chemical Industry Conference Europe (PCIC Europe), 2012, pp. 1-8.
[65] J.C. Das, "Arc Flash Hazard and Mitigation," A John Wiley & Sons, Inc., Publication, 2012, pp. 454.
[66] H.E. Ouadhane, M. Haim, H. Spitzer, "Solutions for Internal Arc Protection ACC. IEC 62271-200 with Pressure Relief into the Switchgear Room for Gas and Air Insulated Medium Voltage Switchgears," in Proceedings of 21st International Conference on Electricity Distribution, Frankfurt, 2011, pp. 1-5.
[67] CBS ArcSafe, Inc. "Product Catalog: Distance is Safety," 2019.
[68] "Remote Circuit Breaker Racking Systems & Remote Switch Operator~Actuators," Western Electrical Services, Inc.
[69] Afshin Majd, "An Improved Arc Flash Energy Calculation Method
and Its Application," in IEEE Transactions on Industry Applications, Vol. 53, 2017, pp. 5062-5067.
[70] Albert M. Smoak, " An Investigation of Low Voltage Arc Flash Exposure, " in 2013 IEEE IAS Electrical Safety Workshop, 2013.
[71] Marcia L. Eblen, "Low-Voltage ARC Sustainability," in IEEE Transactions on Industry Applications, Vol. 54, 2018.
[72] Jim Phillips, "2018 IEEE 1584~Enclosure Size Adjustment Factor," 2019.
https://brainfiller.com/2019/04/17/2018-ieee-1584-enclosure-size-adjustment-factor/

QR CODE