簡易檢索 / 詳目顯示

研究生: 林裕祥
Yu-Hsiang Lin
論文名稱: 運用儲能系統於電壓驟降改善之研究
Improvement of Voltage Sag Using Energy Storage System
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 郭政謙
Cheng-Chien Kuo
張宏展
Hong-Chan Chang
張建國
Chien-Kuo Chang
陳鴻誠
Hung-Cheng Chen
黃維澤
Wei-Tzer Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 電壓驟降儲能系統WECC通用模型Q-V下垂控制
外文關鍵詞: Voltage Sag, Battery Energy Storage System, WECC Generic Model, Q-V Droop Control
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討運用儲能系統改善電網中的電壓驟降,電壓驟降是電力系統中相當嚴重的電力品質問題,短時間內的電壓下降會影響電網運行,導致資料遺失或設備中斷運作,造成用戶的鉅額損失。因台灣高科技產業發達,對電力系統的穩定性要求極高,特別是半導體製程中有許多敏感性負載,對於電壓波動敏感度較高。為了減緩此問題對電網的影響,本文提出利用儲能系統進行電壓驟降改善,驗證了國際間常見的功率傳輸能力標準應用於改善電壓驟降的性能,評估所需的儲能系統容量。
    目前常見的電壓驟降解決方案包括故障電流抑制器、動態電壓調節器以及靜態同步補償器等等,這些設備雖能緩解電壓驟降,但功能較為單一,前兩項僅在電壓驟降時有效,無法兼顧電網正常運作時的其它需求,靜態同步補償器可於電網正常運行時調節虛功,但無法進行實功調控的功能。儲能系統則無上述之缺點,在電網正常與故障期間均具有應用價值,如削峰填谷、契約容量控制以及與間歇性再生能源整合等等。這些功能不僅有助於提高電網的穩定性和韌性,也可與再生能源有效搭配,減少化石燃料的用量,符合聯合國氣候大會推動之2050年淨零碳排的目標。
    本文也說明了電壓驟降的定義、原理以及規範,探討了常見的電壓驟降緩解方式與儲能系統的不同之處,於電力系統模擬軟體PSS/E建立2025年輕載、尖載情境之電網系統以及WECC儲能系統通用模型,並以國際間常見之功率傳輸能力要求作為控制策略之參考,補償目標則依據全球半導體產業協會提出之電壓驟降抗擾度規範。當電網之345kV超高壓匯流排發生短路故障導致電壓驟降時,設置於161kV特高壓匯流排之儲能系統可迅速反應,依據控制策略注入虛功以進行電壓支持,並在故障清除後加速電壓恢復至標稱值,最後,評估所需的儲能系統容量以作為未來設置容量之參考,可驗證使用儲能系統於電壓驟降改善具有一定程度的效益。


    This thesis aims to explore the application of battery energy storage systems to improve voltage sags in the electrical grid. Voltage sags significantly affect power quality; short-term voltage drops can disrupt grid operations, leading to data loss or equipment shutdowns, resulting in substantial losses for users. Given Taiwan's advanced high-tech industry and its high demands for power system stability, particularly in semiconductor processes where loads are highly sensitive to voltage fluctuations, this paper proposes the use of ESS to mitigate the impact of voltage sags on the grid. It validates the performance of common international power transmission capacity standards for improving voltage sags and assesses the required capacity of energy storage systems.
    Current solutions for voltage sags include fault current limiters, dynamic voltage restorers, and static synchronous compensators. Although these devices can alleviate voltage sags, their functionalities are relatively singular; the first two are only effective during voltage sags and do not address other needs during normal grid operations. Static synchronous compensators can adjust reactive power during normal operations but lack real power control capabilities. Energy storage systems do not have these limitations and are valuable during both normal and fault conditions, offering peak shaving, contract capacity control, and integration with intermittent renewable energy sources. These functionalities not only enhance the stability and resilience of the grid but also align with the United Nations Climate Conference's goal of net-zero carbon emissions by 2050 by effectively pairing with renewable energy and reducing fossil fuel usage.
    Before conducting simulation analysis, this paper defines voltage sags, their principles, and standards. It discusses common mitigation methods for voltage sags compared to energy storage systems and introduces the WECC generic BESS model. The paper establishes a 2025 light-load and peak-load grid system scenario in the power system simulation software PSS/E, using common international power transmission capacity requirements as a reference for control strategies. The compensation target is based on the voltage sag immunity specifications proposed by the Semiconductor Equipment and Materials International. When a voltage sag occurs at the 345kV ultra-high voltage bus, the BESS located at the 161kV extra-high voltage bus can respond quickly, injecting reactive power according to the control strategy to support the voltage, and accelerate the voltage recovery to the nominal value after fault clearance. Finally, the paper assesses the required capacity of the energy storage system to serve as a reference for future capacity installations.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法 3 1.3 章節概述 4 第二章 電壓驟降簡介 6 2.1 電壓驟降簡介 6 2.2 電壓驟降定義 IEEE 1159-2019標準 8 2.3 電壓驟降原理 11 2.4 電壓驟降規範 SEMI F47-0706 12 第三章 電壓驟降改善方法 14 3.1 故障電流抑制器 14 3.2 動態電壓恢復器 17 3.3 不斷電系統 18 3.4 靜態同步補償器 21 第四章 儲能系統通用模型介紹與建立 24 4.1 前言 24 4.2 REPC_A模型 26 4.3 REEC_C模型 27 4.4 REGC_A模型 29 第五章 儲能系統功率傳輸能力要求 30 5.1 前言 30 5.2 IEEE 1547-2018標準 30 5.3 IEEE 2800-2022標準 34 第六章 Q-V控制理論 36 6.1 前言 36 6.2 Q-V控制的基本概念及其在電力系統中的應用 36 6.3 Q-V下垂控制法理論分析 38 6.4 BESS之下垂控制 39 第七章 實驗結果 40 7.1 實驗方法 40 7.2 模擬架構與情境 40 7.3 控制策略 40 7.4 輕載情境之模擬結果分析 43 7.4.1 模擬結果 44 7.4.2 輕載情境統整 53 7.5 尖載情境之模擬結果分析 55 7.5.1 模擬結果 55 7.5.2 尖載情境統整 62 第八章 結論與未來展望 64 8.1 結論 64 8.2 未來展望 67 8.2.1 結合多種功能至儲能系統以評估效益 67 8.2.2 建立精確模型參數 67 8.2.3 使用併網模式及孤島模式之儲能系統模型 67 參考文獻 68 附錄A 72

    [1] S. Dahat, N. Bodele, and S. Bagde, Compensation of Voltage Fluctuation by using Dynamic Voltage Restorer (DVR) with the Different Control Techniques. 2017, pp. 38-44.
    [2] S. S. Choi, B. H. Li, and D. M. Vilathgamuwa, "Dynamic voltage restoration with minimum energy injection," IEEE Transactions on Power Systems, vol. 15, no. 1, pp. 51-57, 2000, doi: 10.1109/59.852100.
    [3] A. Moschitta, P. Carbone, and C. Muscas, "Generalized Likelihood Ratio Test for Voltage Dip Detection," IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 5, pp. 1644-1653, 2011, doi: 10.1109/TIM.2011.2113110.
    [4] M. Bollen, Understanding Power Quality Probems - Voltage Sags and Interruptions. 2000.
    [5] W. E. Brumsickle, R. S. Schneider, G. A. Luckjiff, D. M. Divan, and M. F. McGranaghan, "Dynamic sag correctors: cost-effective industrial power line conditioning," IEEE Transactions on Industry Applications, vol. 37, no. 1, pp. 212-217, 2001, doi: 10.1109/28.903150.
    [6] D. Gallo, C. Landi, M. Luiso, and E. Fiorucci, "Survey on Voltage Dip Measurements in Standard Framework," IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 2, pp. 374-387, 2014, doi: 10.1109/TIM.2013.2278996.
    [7] S. Deshmukh and B. Dewani, "Overview of Dynamic Voltage Restorer ( DVR ) for Power Quality Improvement," 2012.
    [8] G. Yaleinkaya, M. H. J. Bollen, and P. A. Crossley, "Characterization of voltage sags in industrial distribution systems," IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 682-688, 1998, doi: 10.1109/28.703958.
    [9] J. C. Gomez and M. M. Morcos, "Voltage sag and recovery time in repetitive events," IEEE Transactions on Power Delivery, vol. 17, no. 4, pp. 1037-1043, 2002, doi: 10.1109/TPWRD.2002.803840.
    [10] R. Bhujade, S. Maharjan, A. M. Khambadkone, and D. Srinivasan, "Economic analysis of annual load loss due to voltage sags in industrial distribution networks with distributed PVs," Solar Energy, vol. 252, pp. 363-372, 2023/03/01/ 2023, doi: https://doi.org/10.1016/j.solener.2023.01.041.
    [11] H.-J. Lee, S.-H. Lim, and J.-C. Kim, "Application of a Superconducting Fault Current Limiter to Enhance the Low-Voltage Ride-Through Capability of Wind Turbine Generators," Energies, vol. 12, p. 1478, 04/18 2019, doi: 10.3390/en12081478.
    [12] (2023). 台灣電力股份有限公司再生能源發電系統併聯技術要點.
    [13] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems. 2011.
    [14] (2022). 臺灣 2050 淨零排放路徑及策略總說明.
    [15] "IEEE Recommended Practice for Monitoring Electric Power Quality," IEEE Std 1159-2019 (Revision of IEEE Std 1159-2009), pp. 1-98, 2019, doi: 10.1109/IEEESTD.2019.8796486.
    [16] I. Monedero, C. León, J. Ropero, J. Vega, J.-C. Montaño, and J. Elena, "A System for the Generation and Detection of Electrical Disturbances," 01/01 2004.
    [17] W. Chankhamrian and K. Bhumkittipich, "The Effect of Series-Connected Transformer in DVR Applications," Energy Procedia, vol. 9, pp. 306-315, 12/31 2011, doi: 10.1016/j.egypro.2011.09.033.
    [18] J. Bird, Electrical Circuit Theory and Technology. Newnes, 2010.
    [19] X. Zhou, Y. Liu, P. Chang, F. Xue, and T. Zhang, "Voltage Stability Analysis of a Power System with Wind Power Based on the Thevenin Equivalent Analytical Method," Electronics, vol. 11, p. 1758, 06/01 2022, doi: 10.3390/electronics11111758.
    [20] A. Saeed, S. Abdel Aleem, A. Ibrahim, M. Balci, and E. E.-D. Abou El-Zahab, "Power Conditioning Using Dynamic Voltage Restorers under Different Voltage Sag Types," Journal of Advanced Research, vol. 7, pp. 95-103, 02/04 2016, doi: 10.1016/j.jare.2015.03.001.
    [21] SEMI F47-0200 Specifications for semiconductor processing equipment voltage sags immunity, S. E. a. M. International, 2006.
    [22] A. Sannino, M. G. Miller, and M. H. J. Bollen, "Overview of voltage sag mitigation," in 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077), 23-27 Jan. 2000 2000, vol. 4, pp. 2872-2878 vol.4, doi: 10.1109/PESW.2000.847340.
    [23] L. Ye, M. Majoros, T. Coombs, and A. M. Campbell, "System Studies of the Superconducting Fault Current Limiter in Electrical Distribution Grids," IEEE Transactions on Applied Superconductivity, vol. 17, no. 2, pp. 2339-2342, 2007, doi: 10.1109/TASC.2007.900988.
    [24] H. He et al., "Study of Liquid Metal Fault Current Limiter for Medium-Voltage DC Power Systems," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 8, pp. 1391-1400, 2018, doi: 10.1109/TCPMT.2018.2791435.
    [25] B. Shen, Y. Chen, C. Li, S. Wang, and X. Chen, "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, vol. 234, p. 121251, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.energy.2021.121251.
    [26] J. Miret, M. Castilla, A. Camacho, L. G. d. Vicuña, and J. Matas, "Control Scheme for Photovoltaic Three-Phase Inverters to Minimize Peak Currents During Unbalanced Grid-Voltage Sags," IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4262-4271, 2012, doi: 10.1109/TPEL.2012.2191306.
    [27] J. G. Nielsen and F. Blaabjerg, "Comparison of system topologies for dynamic voltage restorers," in Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248), 30 Sept.-4 Oct. 2001 2001, vol. 4, pp. 2397-2403 vol.4, doi: 10.1109/IAS.2001.955957.
    [28] N. H. Woodley, L. Morgan, and A. Sundaram, "Experience with an inverter-based dynamic voltage restorer," IEEE Transactions on Power Delivery, vol. 14, no. 3, pp. 1181-1186, 1999, doi: 10.1109/61.772390.
    [29] G. V. N. Kumar and D. D. Chowdary, "DVR with Sliding Mode Control to alleviate Voltage Sags on a Distribution System for Three Phase Short Circuit Fault," in 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems, 8-10 Dec. 2008 2008, pp. 1-4, doi: 10.1109/ICIINFS.2008.4798344.
    [30] A. Moghassemi and S. Padmanaban, "Dynamic Voltage Restorer (DVR): A Comprehensive Review of Topologies, Power Converters, Control Methods, and Modified Configurations," Energies, vol. 13, no. 16, doi: 10.3390/en13164152.
    [31] N. Goel, R. Patel, and S. Chacko, "Genetically Tuned STATCOM for Voltage Controland Reactive Power Compensation," International Journal of Computer Theory and Engineering, pp. 345-351, 01/01 2010, doi: 10.7763/IJCTE.2010.V2.165.
    [32] Y. Xie, Y. Hou, D. Zhang, T. Wen, and X. Jiang, "Power System Frequency Dynamic Simulation Analysis and Tool Development of PSS/E," in 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), 17-19 Dec. 2021 2021, vol. 2, pp. 667-672, doi: 10.1109/ICIBA52610.2021.9688049.
    [33] L. Lin, K. Zhang, F. Sun, and Q. Li, "Comparison and Conversion of Dynamic Models of Speed Governor for Transient Stability Analysis in BPA and PSS/E," in 2010 Asia-Pacific Power and Energy Engineering Conference, 28-31 March 2010 2010, pp. 1-4, doi: 10.1109/APPEEC.2010.5448638.
    [34] X. Xu, M. Bishop, D. G. Oikarinen, and C. Hao, "Application and modeling of battery energy storage in power systems," CSEE Journal of Power and Energy Systems, vol. 2, no. 3, pp. 82-90, 2016, doi: 10.17775/CSEEJPES.2016.00039.
    [35] O. B. Adewumi, G. Fotis, V. Vita, D. Nankoo, and L. Ekonomou, "The Impact of Distributed Energy Storage on Distribution and Transmission Networks’ Power Quality," Applied Sciences, vol. 12, no. 13, doi: 10.3390/app12136466.
    [36] WECC, "Specification of the Second Generation Generic Models for Wind Turbine Generators," 2013.
    [37] S. PTI, "PSS®E 33.4 Model Library," Schenectady, NY, USA, 2013.
    [38] D.-H. Yoon, "A Study on the Development of a Novel ESS Simulation Model for Transmission-Level Power-System Analysis," Energies, vol. 15, no. 23, doi: 10.3390/en15239243.
    [39] WECC, "WECC Battery Storage Dynamic Modeling Guideline," November 2016.
    [40] "IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces," IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pp. 1-138, 2018, doi: 10.1109/IEEESTD.2018.8332112.
    [41] "IEEE Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric Power Systems," IEEE Std 2800-2022, pp. 1-180, 2022, doi: 10.1109/IEEESTD.2022.9762253.
    [42] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, "Control of Power Converters in AC Microgrids," IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734-4749, 2012, doi: 10.1109/TPEL.2012.2199334.
    [43] N. N. Opiyo, "Droop control methods for PV-based mini grids with different line resistances and impedances," Smart Grid and Renewable Energy, vol. 9, no. 6, pp. 101-112, 2018.
    [44] H. Bevrani and S. Shokoohi, "An Intelligent Droop Control for Simultaneous Voltage and Frequency Regulation in Islanded Microgrids," IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1505-1513, 2013, doi: 10.1109/TSG.2013.2258947.

    無法下載圖示
    全文公開日期 2029/01/15 (校外網路)
    全文公開日期 2029/01/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE