簡易檢索 / 詳目顯示

研究生: 施懿庭
Yi-Ting Shih
論文名稱: 沉積氧化銥及氧化釕於奈米碳管並以石墨烯為基板之電化學電容特性
Electrochemical capacitor characteristics of IrO2 and RuO2 nanostructures coated onto carbon nanotubes grown on graphene-based substrate
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 何清華
Ching-Hwa Ho
黃鶯聲
Yin-Sheng Huang
王蒼容
Chun-Long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 105
中文關鍵詞: 奈米碳管石墨烯電化學電容電雙層電容偽電容二氧化釕二氧化銥
外文關鍵詞: electrochemical double layer capacitor, iridium dioxide
相關次數: 點閱:274下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗以石墨烯為導電基板,在其上成長奈米碳管束陣列,並利用此奈米碳管束陣列為模板披覆二氧化釕及二氧化銥做為電化學電容器之電極材料。奈米碳管具有高導電性、高化學穩定性及高比表面積之特性,並可經由光微影技術定義其圖形之樣式以增加與電解液之接觸面積。而二氧化釕及二氧化銥擁有良好的偽電容特性,因此本實驗所利用之二氧化釕及二氧化銥披覆於奈米碳管/石墨烯上之結構可有效地提高電雙層電容特性。由實驗結果得知,當所設計之奈米碳管束陣列圖形之孔洞直徑為10 微米且其間距為5 微米時,具有最佳之電化學電容特性。其中以定電流量測法測得之奈米碳管束陣列之比電容值為6.9 F/g,二氧化釕披覆於奈米碳管束陣列上之比電容值為121.1 F/g,二氧化銥披覆於奈米碳管束陣列上之最佳比電容值為129.4 F/g。在電容穩定性之量測方面,經過1000次之充放電後,二氧化釕及二氧化銥披覆於奈米碳管束陣列上之電容特性皆可保持穩定。本實驗所製作之二氧化釕及二氧化銥披覆於奈米碳管束陣列結構皆為良好之電化學電極材料。


Graphene was used as a conductive substrate in this study. Vertically aligned carbon nanotube (CNT) arrays were grown onto the graphene, which was used as a template for RuO2 and IrO2 nanostructure growth. The nanostructures were then used as a material for building an electrochemical capacitor. CNTs have many special properties such as high aspect ratio, good conductivity and chemical stability. By synthesizing CNTs with the aid of photolithography techniques, the CNT pattern can be designed to maximize the electrolyte contact area. RuO2 and IrO2 exhibit good pseudo-capacitor characteristics, and therefore a CNTs/graphene coated with RuO2 and IrO2 nanostructures could be used to effectively enhance the electrochemical capacitor characteristics. From the experimental results the optimal design pattern was 10 micrometer pore diameter with a separation of 5 micrometer between pores. The specific capacitances of CNTs/graphene, RuO2/CNTs/graphene and IrO2/CNTs/graphene were 6.9, 121.1, and 129.4 F/g, respectively. Long-term testing was conducted by carrying out 1000 charge-discharge cycles with subsequent measurements carried out. The CNTs/graphene, RuO2/CNTs/graphene and IrO2/CNTs/graphene could maintain stable electrochemical characteristics. The synthesized CNTs/graphene, RuO2/CNTs/graphene and IrO2/CNTs/graphene were suitable for the electrochemical applications.

Abstract (in Chinese) Abstract (in English) Contents Figure captions Table list Chapter 1 Introduction 1.1 Carbon nanotube 1.1.1 Discovery of carbon nanotube 1.1.2 Structure of carbon nanotube 1.1.3 Property of carbon nanotube 1.2 Graphene 1.2.1 Discovery of graphene 1.2.2 Structure of graphene 1.2.2.1 Structure of single-layer graphene 1.2.2.2 Structure of bilayer and multilayer graphene 1.2.3 Electron energy band of graphene 1.2.4 Phonon dispersion of graphene 1.2.5 Raman spectroscopy of graphene 1.2.6 Formation methods of graphene 1.3 Electrochemical double layer capacitor 1.3.1 Historical background 1.3.2 Introduction to electrochemical double layer capacitor 1.3.3 Introduction to pseudo-capacitor 1.4 Motivation Chapter 2 Experimental 2.1 Experimental procedure 2.2 Process 2.2.1 Preparation of substrate 2.2.2 Formation of graphene 2.2.3 Transfer of graphene 2.2.4 Photolithography 2.2.5 Electron beam evaporator 2.2.6 Growth of Carbon Nanotube 2.2.7 Coverage of RuO2 2.2.8 Coverage of IrO2 2.3 Analysis and measurement 2.3.1 Scanning electron microscopy and energy dispersive X-ray spectroscope 2.3.2 Transmission electron microscope 2.3.3 Raman spectroscopy 2.3.4 Electrochemical Analyzer 2.3.4.1 Cyclic voltammetry 2.3.4.2 Charge-discharge measurement 2.3.4.3 Electrochemical impedance spectroscopy Chapter 3 Results and discussion 3.1 Electrode material analysis 3.1.1 Definition of the pattern for CNT growth 3.1.2 Morphological characterization 3.1.3 Internal morphological characterization 3.1.4 Analysis of Raman spectrum 3.2 Electrochemical characteristics of EDLC 3.2.1 Cyclic voltammetry and charge-discharge measurement for CNT 3.2.2 Cyclic voltammetry for pseudocapacitor 3.2.3 Charge-discharge measurement Chapter 4 Conclusions Reference Publications

[1]S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[2]S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, pp. 603-605, 1993.
[3]J. W. Mintmire and C. T. White, "Electronic and structural properties of carbon nanotubes," Carbon, vol. 33, pp. 893-902, 1995.
[4]R. Saito, Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998.
[5]J. Hass, W. A. De Heer, and E. H. Conrad, "The growth and morphology of epitaxial multilayer graphene," J. Phys.: Condens. Matter, vol. 20, pp. 323202-323228, 2008.
[6]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
[7]S. Mikhailov, Physics and Applications of Graphene - Theory, Croatia: Intech, 2011.
[8]R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, "Electronic structure of graphene tubules based on C60," Phys. Rev. B, vol. 46, pp. 1804-1811, 1992.
[9]D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, "Properties of graphene: A theoretical perspective," Adv. in Phys., vol. 59, pp. 261-482, 2010.
[10]L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Phys. Rep., vol. 473, pp. 51-87, 2009.
[11]D. D. L. Chung, "Review: Graphite," J. Mater. Sci., vol. 37, pp. 1475-1489, 2002.
[12]S. Reich and C. Thomsen, "Raman spectroscopy of graphite," Philos. T. R. A, vol. 362, pp. 2271-2288, 2004.
[13]A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects," Solid State Commun., vol. 143, pp. 47-57, 2007.
[14]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett., vol. 97, pp.187401-187404, 2006.
[15]X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colomba, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano Lett., vol. 9, pp. 4359-4363, 2009.
[16]P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Appl. Phys. Lett., vol. 91, pp. 063124-1-063124-3, 2007.
[17]W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, "Epitaxial graphene," Solid State Commun., vol. 143, pp. 92-100, 2007.
[18]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. De Heer, "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.
[19]A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, pp. 2017-2021, 2007.
[20]A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and K. Jing, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Lett., vol. 9, pp. 30-35, 2009.
[21]Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Appl. Phys. Lett., vol. 93, pp. 113103-1-113103-3, 2008.
[22]J. R. Miller, "Introduction to electrochemical capacitor technology," IEEE Electr. Insul. M., vol. 26, pp. 40-47, 2010.
[23]B. E. Conway, "Transition from 'supercapacitor' to 'battery' behavior in electrochemical energy storage," J. Electrochem. Soc., vol. 138, pp. 1539-1548, 1991.
[24]P. Sharma and T. S. Bhatti, "A review on electrochemical double-layer capacitors," Energy Conver. Manage., vol. 51, pp. 2901-2912, 2010.
[25]R. Kotz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochim. Acta, vol. 45, pp. 2483-2498, 2000.
[26]W. D. Zhang, B. Xu, and L. C. Jiang, "Functional hybrid materials based on carbon nanotubes and metal oxides," J. Mater. Chem., vol. 20, pp. 6383-6391, 2010.
[27]B. E. Conway, W. G. Pell, and T. C. Liu, "Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries," J. Power Sources, vol. 65, pp. 53-59, 1997.
[28]T. Arikado, C. Iwakura, and H. Tamura, "Electrochemical behaviour of the ruthenium oxide electrode prepared by the thermal decomposition method," Electrochim. Acta, vol. 22, pp. 513-518, 1977.
[29]B. E. Conway and J. Mozota, "Surface and bulk processes at oxidized iridium electrodes-II. Conductivity-switched behaviour of thick oxide films," Electrochimica Acta, vol. 28, pp. 9-16, 1983.
[30]H. Shi, "Activated carbons and double layer capacitance," Electrochim. Acta, vol. 41, pp. 1633-1639, 1996.
[31]I. Tanahashi, "Comparison of the characteristics of electric double-layer capacitors with an activated carbon powder and an activated carbon fiber," J. Appl. Electrochem., vol. 35, pp. 1067-1072, 2005.
[32]E. Frackowiak and F. Beguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, pp. 937-950, 2001.
[33]C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, "High power electrochemical capacitors based on carbon nanotube electrodes," Appl. Phys. Lett., vol. 70, pp. 1480-1482, 1997.
[34]M. M. Shaijumon, F. S. Ou, L. Ci, and P. M. Ajayan, "Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes," Chem. Commun., pp. 2373-2375, 2008.
[35]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater., vol. 6, pp. 183-191, 2007.
[36]H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, "Evaluation of solution-processed reduced graphene oxide films as transparent conductors," ACS Nano, vol. 2, pp. 463-470, 2008.
[37]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, 2007.
[38]M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, "Raman spectroscopy of carbon nanotubes," Phys. Rep., vol. 409, pp. 47-99, 2005.
[39]J. Juodkazyte, B. Šebeka, I. Valsiunas, and K. Juodkazis, "Iridium anodic oxidation to Ir(III) and Ir(IV) hydrous oxides," Electroanalysis, vol. 17, pp. 947-952, 2005.
[40]T. P. Luxton, M. J. Eick, and K. G. Scheckel, "Characterization and dissolution properties of ruthenium oxides," J. Colloid Interface Sci., vol. 359, pp. 30-39, 2011.

無法下載圖示 全文公開日期 2017/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE