簡易檢索 / 詳目顯示

研究生: 潘健義
Agus - Irawan
論文名稱: 以光觸媒過濾膜反應器處理Acid Red 4 及N-Methyl Pyrrolidinone之動力研究
Kinetic Studies for Photodegradation of Acid Red 4 Dye and N-Methyl Pyrrolidinone in a Photocatalytic Membrane Reactor
指導教授: 顧洋
Young, Ku
口試委員: 曾迪華
Dyi Hua, Tseng
蔣本基
Pen-Chi, Chiang
劉志成
Jhy-Chern, Liu
張祖恩
Juu-En, Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 130
中文關鍵詞: 光催化氧化鋁陶瓷光觸媒過濾薄膜程序二氧化鈦
外文關鍵詞: kinetic studies., Photocatalytic membrane reactor
相關次數: 點閱:278下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以氧化鋁陶瓷過濾膜管為基材,於陶瓷過濾膜管內壁披覆P-25,並將含染料之水溶液以傳統光觸媒固定膜的掃流(未過濾)方式操作,或以新型光觸媒過濾薄膜反應器的貫流方式滲透過光觸媒薄膜,比較兩種反應器形式對於反應污染物去除的效果。研究結果顯示,新型光觸媒過濾薄膜反應器對反應污染物去除速率比傳統光觸媒固定膜反應器快。這是因為新型光觸媒過濾薄膜反應器是藉由強制過濾的方式將反應污染物輸送通過光觸媒過濾薄膜,可以提升污染物與光觸媒的接觸,降低質傳限制對於反應速率的影響。本研究也將針對光觸媒過濾薄膜反應器處理染料水溶液之相關的變因進行探討,包括:溶液pH值、操作壓力、光強度、觸媒量、反應物起始濃度等,建立光觸媒過濾薄膜反應器的動力模式,以描述光觸媒過濾薄膜反應器對染料水溶液之光催化反應行為。


A photocatalytic membrane reactor, in which permeation of solutes through a membrane and photocatalytic reaction occur simultaneously, is described. In this photocatalytic membrane reactor, TiO2 catalyst was coated on the surface of ceramic filter tube and most of the experiments were conducted in one pass dead-end system. Acid Red 4 (AR 4) dye and N-Methyl Pyrrolidinone (NMP) were used as model pollutant. A detailed study of physical parameters including solution pH, catalyst loading, light intensity, flow rate and initial pollutant concentration has been performed to obtain the reaction kinetics. The simultaneous effects of catalyst loading-light intensity and catalyst loading-flow rate were also determined experimentally. Experiments were also conducted to compare the photocatalytic degradation of AR 4 in the dead-end and tangential-flow system. The results showed that for both model pollutants, the decomposition ratio increased with increasing catalyst loading and light intensity since more active sites available for reaction, but the decomposition ratio will remain constant at higher catalyst loading since the light cannot penetrate deeper into the catalyst layer. The decomposition ratio was found to be decreased with increasing solution pH and flow rate. In studying the flow rate effect, a photocatalytic reaction model where photocatalytic reaction happened in the outer reaction zone and in the inner reaction zone under membrane permeation condition was proposed and the result was consistent with the observed experimental data.

Abstract Table of Contents List of Figures List of Tables Nomenclatures Chapter 1 Introduction……………………………………………1 Chapter 2 Literature Review………………………………………4 2.1 Advanced Oxidation Processes………………………………………… 4 2.1.1 UV Photolysis……………………………………………………… 5 2.1.2 UV/Oxidation Processes…………………………………………… 6 2.1.3 Photo-Fenton Processes…………………………………………… 6 2.1.4 Sensitized Advanced Oxidation Processes…………………………7 2.2 Fundamental Aspects of Photocatalysts……………………………………9 2.3 Photocatalytic Reactors……………………………………………………14 2.3.1 Slurry Reactor……………………………………………………… 14 2.3.2 Immobilized System………………………………………………… 15 2.3.3 Fixed and Fluidized Bed Reactor…………………………………… 16 2.3.4 Fiber Reactor………………………………………………………… 17 2.4 Photocatalytic Membrane Reactor………………………………………… 18 2.5 Kinetic Model……………………………………………………………… 24 Chapter 3 Experimental……………………………………………………28 3.1 Apparatus…………………………………………………………………… 28 3.2 Materials…………………………………………………………………… 30 3.3 Experimental Procedures…………………………………………………… 32 Chapter 4 Results and Discussion…………………………………………… 39 4.1 Characterization of TiO2 Catalyst………………………………………… 39 4.1.1 X-Ray Diffraction (XRD) Analysis………………………………… 39 4.1.2 Scanning Electron Microscope (SEM) Analysis…………………… 41 4.1.3 Zeta Potential Analysis……………………………………………… 44 4.2 Photocatalytic Degradation of Acid Red 4 (AR 4)………………………… 45 4.2.1 Effect of Light Intensity……………………………………………… 46 4.2.2 Effect of Catalyst Loading…………………………………………… 53 4.2.3 Combined Effect of Light Intensity and Catalyst Loading………… 57 4.2.4 Effect of Flow Rate………………………………………………… 61 4.2.5 Combined Effect of Catalyst Loading and Flow Rate……………… 73 4.2.6 Comparison between Dead-end and Tangential Flow……………… 77 4.3 Photocatalytic Degradation of N-Methyl Pyrrolidinone (NMP)………… 81 4.3.1 Effect of Solution pH………………………………………………… 81 4.3.2 Reaction Pathway of NMP Degradation…………………………… 85 4.3.3 Effect of Light Intensity…………………………………………… 88 4.3.4 Effect of Catalyst Loading…………………………………………… 94 4.3.5 Combined Effect of Light Intensity and Catalyst Loading………… 97 4.3.6 Effect of Flow Rate………………………………………………… 100 4.3.7 Combined Effect of Catalyst Loading and Flow Rate……………… 107 4.4 Comparison between Photocatalytic Degradation of Acid Red 4 and N-Methyl Pyrrolidinone……………………………………………………………… 111 Chapter 5 Conclusions and Recommendations……………………………… 114 References

Addamo, M., Augugliaro, V., Di Paola, A., Lopez, E. G., Loddo, V., Marci, G., Molinari, R., Palmisano, L., and Schiavello, M., “Preparation, Characterization, and Photoactivity of Polycrystalline Nanostructured TiO2 Catalysts”, J. Phys. Chem. B., Vol. 108, pp. 3303 – 3310 (2004).

Al-Ekabi, H., Butters, B., Delany, D., Holden, W., Powell, T., and Story, J., “The Photocatalytic Destruction of Gaseous Trichloroethylene and Tetrachloroethylene Over Immobilized Titanium-Dioxide”, Photocatalytic Purification and Treatment of Water and Air, Elsevier Science Publishers, B.V. Amsterdam, pp. 719-725 (1993)

Bakardjieva, S., Šubrt, J., Štengl, V., Dianez, M. J., and Sayagues, M. J., “Photoactivity of Anatase–Rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Homogeneously Precipitated Anatase”, Appl. Catal B: Environ., Vol. 58, pp. 193-202 (2005)

Bauer, R., Waldner, G., Fallman, H., Hager, S., Klare, M., Krutzler, T., Malato, S., and Maletzky, P., “The Photo-Fenton Reaction and the TiO2/UV Process for Wastewater Treatment- Novel Developments”, Catal. Today, Vol. 53, pp. 131 (1999)

Bellobono, I. R., Barni, B., and Gianturco, F., “Pre-industrial Experience in Advanced Oxidation and Integral Photodegradation of Organics in Potable Waters and Waste Waters by PHOTOPERM™ Membranes Immobilizing Titanium Dioxide and Promoting Photocatalysts”, J. Membr. Sci., Vol. 102, pp. 139-147 (1995)

Blake, D. M., “Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air”, Technical Report U. S. National Renewable Energy Laboratory, November 2001.

Bosc, F., Ayral, A., and Guizard, C., “Mesoporous Anatase Coatings for Coupling Membrane Separation and Photocatalyzed Reactions”, J. Membr. Sci., Vol. 265, pp. 13-19 (2005)

Bouchy, M., and Zahraa, O., “Photocatalytic Reactors”, Intern. J. Photoenergy, Vol. 5, pp. 191-197 (2003)

Braun, A. M., Maurette, M. T., and Oliveros, E., Photochemical Technology, John Wiley & Sons Ltd, New York (1991)

Burdett, J. K., “Electronic Control of the Geometry of Rutile and Related Structures”, Inorg. Chem., Vol. 24, pp. 2244 (1985).

Burdett, J. K., Hughbands, T., Gordon, J. M., Richardson, J. W., Jr., and Smith, J. V., “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc., Vol. 109, pp. 3639 (1987).

Chen, D., and Ray, A. K., “Photodegradation Kinetics of 4-Nitrophenol in TiO2 Suspension”, Water Res., Vol. 32, pp. 3223-3234 (1998).

Chen, D., Li, F., and Ray, A. K., “Effect of Mass Transfer and Catalyst Layer Thickness on Photocatalytic Reaction”. AiChE J., Vol. 46, pp. 1034-10445 (2000)

Choi, W., Hong, S., Chang, Y., and Cho, Y., “Photocatalytic Degradation of Polychlorinated Dibenzo-p-dioxins on TiO2 Film under UV or Solar Light Irradiation”, Environ. Sci. Technol., Vol. 34, pp. 4810-4815 (2000).

Choi, W., Ko, J. Y., Park, H., and Chung, J. S., “Investigation on TiO2-coated Optical Fibers for Gas-phase Photocatalytic Oxidation of Acetone”, Appl. Catal. B, Environ., Vol. 31 pp. 209-220 (2001)

Cullity, B.D., and Stock, S.R., Elements of X-Ray Diffraction, 3rd edition, Prentice-Hall New Jersey, 2001.

Daneshvar, N., Salari, D., Khataee, A. R., “Photocatalytic Degradation of Azo Dye Acid Red 14 in Water: Investigation of the Effect of Operational Parameters”, J. Photochem. Photobiol. A, Vol. 157, pp. 111 – 116 (2003)

De Lasa, H. L. and Valladares, J., Photocatalytic Reactor, US patent 5,683,589, 1997

Den, W., Ko, F. H., and Huang, T. Y., “Treatment of Organic Wastewater Discharged from Semiconductor Manufacturing Process by Ultraviolet/Hydrogen Peroxide and Biodegradation”, IEEE T. Semiconduct. M., Vol. 15, pp. 540 – 551 (2002).

Doll, T. E., and Frimmel, F. H., “Cross-flow Microfiltration with Periodical Back-washing for Photocatalytic Degradation of Pharmaceutical and Diagnostic Residues – Evaluation of the Long-term Stability of the Photocatalytic Activity of TiO2”, Water Res., Vol. 39, pp. 847 – 854 (2005)

Doll, T. E., Frimmel, F. H., “ Kinetic Study of Photocatalytic Degradation of Carbamazepine, Clofibric Acid, Iomeprol and Iopromide Assisted by Different TiO2 Materials - Determination of Intermediates and Reaction Pathways”, Water Res., Vol. 38, pp. 955-964 (2004)

EPA Handbook on Advanced Photochemical Oxidation Processes (1998).

Fabiyi, M. E., and Skelton, R. L., “Photocatalytic Mineralization of Methylene Blue Using Buoyant TiO2-Coated Polystyrene Beads”, J. Photochem. Photobiol. A: Chem., Vol. 132, pp. 121-128 (2000)

Fahmi, A., Minot, C., Silvi, B., and Causa, M., “Theoritical Analysis of the Structures of Titanium Dioxide Crystals”, Phys. Rev. B, Vol. 47, pp. 11717 (1993).

Fogler, H. S., Elements of Chemical Reaction Engineering, Prentice Hall, 3rd edition, 1999.

Friesen, D. A., Headley, J. V., and Langford, C. H., “The Photooxidative Degradation of N-Methylpyrrolidinone in the Presence of Cs3PW12O40 and TiO2 Colloid Photocatalysts”, Environ. Sci. Technol., Vol. 33, pp. 3193-3198 (1999)

Fujishima, A., Hashimoto K., and Watanabe T., TiO2 Photocatalysis Fundamentals and Application, BKC Inc., pp. 125 (1999)

Fujishima, A., Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Vol. 238, pp. 37 – 38 (1972)

Gao, Y., and Liu, H., “Preparation and Catalytic Property Study of a Novel Kind of Suspended Photocatalyst of TiO2-Activated Carbon Immobilized on Silicone Rubber Film”, Mater. Chem. Phys., Vol. 92, pp. 604-608 (2005)

Govind, R., and Itoh, N., “Membrane Reactor Technology, AIChE Symposium Series”, no 268, Vol. 85, American Institute of Chemical Engineers (1989)

Grzechulska, J., and Morawski, A. W., “Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water”, Appl. Catal., B, Vol. 46, pp. 415 – 419 (2003).

Halmann, M. M., “Photodegradation of Water Pollutants”, CRC Press, Boca Raton (1996).

Hofstadler, K., Bauer, R., Novalic, S., and Heisler, G., “New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers. Photomineralization of 4-Chlorophenol”, Environ. Sci. Technol., Vol. 28, pp. 670-674 (1994)

Huang, D., “Decomposition of Dye-Containing Solution by UV/Photocatalytic Membrane Process”, Master Thesis, National Taiwan University of Science and Technology, Taiwan (2005).

Huisman, I. H., Tragardh, G., Tragardh, C., and Pihlajamaki, A., “Determining of Ceramic Microfiltration Membranes using the Electroviscous Effect”, J. Membr. Sci., Vol. 147, pp. 187-194 (1998).

Jing, L., Sun, X., Cai, W., Xu, Z., Du, Y., and Fu, H., “The Preparation and Characterization of Nanoparticle TiO2/Ti Films and Their Photocatalytic Activity”, J. Phys. Chem. Solids, Vol. 64, pp. 615-623 (2003)

Kanki, T., Hamasaki, S., Sano, N., Toyoda, A., and Hirano, K., “Water Purification in a Fluidized Bed Photocatalytic Reactor Using TiO2-Coated Ceramic Particles”, Chem. Eng. J., Vol. 108, pp. 155–160 (2005)

Kim, D. H., Park, H. S., Kim, S. H., and Lee, K. S., “Synthesis of Novel TiO2 by Mechanical Alloying and Heat Treatment-derived Nanocomposite of TiO2 and NiTiO3”, Catal. Lett., Vol. 106, pp. 29-33 (2006)

Kim, T. K., Lee, M. N., Lee, S. H., Park, Y. C., Jung, C. K., and Boo, J. H., “Development of Surface Coating Technology of TiO2 Powder and Improvement of Photocatalytic Activity by Surface Modification”, Thin Solid Films, Vol. 475, pp.171-177 (2005)

Kirchnerova, J., Cohen, M. L., Guy, C., Klvana, D., “Photocatalytic Oxidation of n-Butanol Under Fluorescent Visible Light Lamp Over Commercial TiO2 (Hombicat UV100 and Degussa P25)”, Appl. Catal. A: General, Vol. 282, pp. 321-332 (2005)

Kleine, J., Peinemann, K. V., Schuster, C., and Warnecke, H. J., “Multifunctional System for Treatment of Wastewaters from Adhesive-producing Industries: Separation of Solids and Oxidation of Dissolved Pollutants using Doted Microfiltration Membranes”, Chem. Eng. Sci., Vol. 57, pp. 1661-1664 (2002)

Konstantinou, I. K., and Albanis, T. A., “TiO2-assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations. A Review”, Appl. Catal. B: Environ., Vol 49, pp. 1-14 (2004)

Kontosa, A. I, Arabatzis, I. M., Tsoukleris, D. S., Kontos, A. G., Bernard, M. C., Petrakis, D. E., Falaras, P., “Efficient Photocatalysts by Hydrothermal Treatment of TiO2”, Catal. Today, Vol. 101, pp. 275-281 (2005)

Krysa, J., Vodehnal., L., and Jirkovsky, J., “Photocatalytic Degradation Rate of Oxalic Acid on a Semiconductive Layer of n-TiO2 Particles in a Batch Mode Plate Photoreactor. Part II: Light Intensity Limit”, J. Appl. Electrochem., Vol. 29, pp. 429-435 (1999).

Ku, Y., Shen, S. S., and Ma, C. M, “Decomposition of Gaseous Trichloroethylene in a Photoreactor with TiO2-Coated Nonwoven Fiber Textile”, Appl. Catal. B: Environ., Vol. 34, pp. 181-190 (2001)

Ku, Y., Tseng, K. Y., Wang, W. Y., “Decomposition of Gaseous Acetone in an Annular Photoreactor Coated with TiO2 Thin Film”, Water Air Soil Pollut., Vol. 168, pp. 313-323 (2005)

Lee, D. K., Kima, S. C., Chob, I. C., Kima, S. J., and Kim, S. W., “Photocatalytic Oxidation of Microcystin-LR in a Fluidized Bed Reactor Having TiO2-Coated Activated Carbon”, Sep. Purif. Technol., Vol. 34, pp. 59–66 (2004)

Li, P., “Treatment of Dye-Containing Solution by Nanofiltration”, Master Thesis, National Taiwan University of Science and Technology, Taiwan (2003).

Li, X.Z., He, C., Graham, N., and Xiong, Y., “Photoelectrocatalytic Degradation of Bisphenol A in Aqueous Solution Using a Au-TiO2/ITO Film”, J. Appl. Electrochem., Vol. 35, pp. 741-750 (2005)

Lin, H., and Valsaraj, K. T., “Development of an Optical Fiber Monolith Reactor for Photocatalytic Wastewater Treatment”, J. Appl. Electrochem., Vol. 35, pp. 699–708 (2005)

Linsebigler, A. L., Lu, G.. Q., and Yates, J. T., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev, Vol. 95, pp. 735-758 (1995).

Maira, A. J., Lau, W. N., Lee, C. Y., Yue, P. L., Chan, C. K., and Yeung, K. L., “Performance of a Membrane-catalyst for Photocatalytic Oxidation of Volatile Organic Compounds”, Chem. Eng. Sci., Vol. 58, pp. 959 – 962 (2003)

Marinangeli, R.E., and Ollis, D.F., “Photo-Assisted Heterogeneous Catalysis with Optical Fibers. Part III. Photoelectodes.”, AIChE J., Vol. 28, pp. 945-955 (1982).

McMurry, J., Organic Chemistry, Thomson Brooks/Cole, 6th edition, 2004

Mehrotra, K., Yablonsky, G. S., and Ray, A. K., “Macro Kinetic Studies for Photocatalytic Degradation of Benzoic Acid in Immobilized Systems”, Chemosphere, Vol. 60, pp.1427-1436 (2005)

Molinari, R., Borgese, M., Drioli, E., Palmisano, L., and Schiavello, M., “Hybrid Processes Coupling Photocatalysis and Membranes for Degradation of Organic Pollutants in Water”, Catal. Today, Vol. 75, pp. 77 - 85 (2002)

Molinari, R., Grande, C., Drioli, E., Palmisano, L., and Schiavello, M., “Photocatalytic Membrane Reactors for Degradation of Organic Pollutants in Water”, Catal. Today, Vol. 67, pp. 273 - 279 (2001)

Molinari, R., Palmisano, L., Drioli, E., and Schiavello, M., “Studies on Various Reactor Configurations for Coupling Photocatalysis and Membrane Process in Water Purification”, J. Membr. Sci., Vol. 206, pp. 399-415 (2002)

Molinari, R., Pirillo, F., Falco, M., Loddo, V., and Palmisano, L., “Photocatalytic Degradation of Dyes by Using a Membrane Reactor”, Chem. Eng. Process., Vol. 43, pp. 1103 – 1114 (2004)

Morris, R. E., Krikanova, E., and Shadman, F., “Photocatalytic Membrane for Removal of Organic Contaminants during Ultra-purification of Water”, Clean. Techn. Environ. Policy, Vol. 6, pp. 96 – 104 (2004)

Mozia, S., Tomaszewska, M., Morawski, A. W., “A New Photocatalytic Membrane Reactor (PMR) for Removal of Azo-dye Acid Red 18 from Water”, Appl. Catal. B: Environ., Vol. 59, pp. 131–137 (2005)

Nohara, K., Hidaka, H., Pelizzetti, E., and Serpone, N., “Processes of Formation of NH4+ and NO3- Ions during the Photocatalyzed Oxidation of N-Containing Compounds at the Titania/ Water Interface”, J. Photochem. Photobiol. A, Vol. 102, pp. 265 – 272 (1997).

Noorjahan, M., Kumari, V. D., Subrahmanyam, M., and Boule, P., “A Novel and Efficient Photocatalyst: TiO2-HZSM-5 Combinate Thin Film”, Appl. Catal. B: Environ., Vol. 47, pp. 209-213 (2004)

Ohno, T., Tokieda, K., Higashida, S., and Matsumura, M., “Synergism between Rutile and Anatase TiO2 Particles in Photocatalytic Oxidation of Naphthalene”, Appl. Catal. A: General, Vol. 244, pp. 383-391 (2003)

Ollis, D. F., “Photocatalytic Powder Layer Reactor: A Uniformly Mixed Gas Phase Occuring in a Catalytic Fixed-Bed Flow Reactor”, Ind. Eng. Chem. Res., Vol. 41, pp. 6409-6412 (2002)

Ollis, D. F., Pelizzetti, E., and Serpone, N., “Destruction of Water Contaminants”, Environ. Sci. Technol., Vol. 25, pp. 1523-1529 (1991)

Pirkanniemi, K., and Sillanpaa, M., “Heteregeneous Water Phase Catalysis as an Environmental Application: A Review”, Chemosphere, Vol. 48, pp. 1047 (2002)

Porter, J. J., and Zhuang, S., “Microfiltration of Sodium Nitrate and Direct Red 2 Dye using Asymmetric Titanium Dioxide Membranes on Porous Ceramic Tubes”, J. Membr. Sci., Vol. 110, pp. 119-132 (1996)

Pozzo, R. L., Giombi, J. L., Baltanás, M. A., and Cassano, A. E., “The Performance in a Fluidized Bed Reactor of Photocatalysts Immobilized onto Inert Supports”, Catal. Today, Vol. 62, pp. 175–187 (2000)

Preocanin, T., and Kallay, N., “Point of Zero Charge and Surface Charge Density of TiO2 in Aqueous Electrolyte Solution as Obtained by Potentiometric Mass Titration”, Croat. Chem. Acta, Vol. 79, pp. 95 – 106 (2006)

Puma, G.. L., and Yue, P. L., “A Novel Fountain Photocatalytic Reactor: Model Development and Experimental Validation”, Chem. Eng. Sci., Vol. 56, pp. 2733-2744 (2001)

Ray, A. K., “Design, Modelling and Experimentation of a New Large-Scale hotocatalytic Reactor for Water Treatment”, Chem. Eng. Sci., Vol. 54, pp. 3113-3125 (1999)
Ray, A. K., “Novel Photocatalytic Reactor for Water Purification”, AIChE J., Vol. 44, pp. 477-483 (1998)

Ray, A. K., Beenackers, A. A. C. M., “Development of a New Photocatalytic Reactor for Water Purification”, Catal. Today, Vol. 40, pp. 73 – 83 (1998)

Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., and Murugesan, V., “Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO2”, Sol. Energy Mater. Sol. Cells, Vol. 77, pp. 65-82 (2003)

Sengupta, T. K., Kabir, M. F., and Ray, A. K., “A Taylor Vortex Photocatalytic Reactor for Water Purification”, Ind. Eng. CHem. Res., Vol. 40, pp.5268-5281 (2001).

Serpone, N., “Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis”, J. Photochem. Photobio. A: Chem., Vol. 104, pp. 1-12 (1997).

Serpone, N., Terzian, R., Lawless, D., Kennepohl., P., and Sauve, G., “On the Usage of Turnover Numbers and Quantum Yields in the Heterogeneous Photocatalysis”, J. Photochem. Photobio. A: Chem., Vol. 73, pp. 11-16 (1993).

Shang, J., Li, W., and Zhu, Y., “Structure and Photocatalytic Characteristics of TiO2 Film Photocatalyst Coated on Stainless Steel Webnet”, J. Mol. Catal. A: Chem., Vol. 202, pp. 187-195 (2003)

Singh, H. K., and Muneer, M., “Photodegradation of a Herbicide Derivative 2, 4-Dichlorophenoxy Acetic Acid in Aqueous Suspensions of Titanium Dioxide”, Res. Chem. Intermed., Vol. 30, pp. 317-329 (2004).

Sopajaree, K., Qasim, S. A., Basak, S., and Rajeshwar, K., “An Integrated Flow Reactor-Membrane Filtration System for Heterogenous Photocatalysis. Part I: Experiments and Modelling of a Batch-Recirculated Photoreactor”, J. Appl. Electrochem., Vol. 29, pp. 533-539 (1999)

Sopajaree, K., Qasim, S. A., Basak, S., and Rajeshwar, K., “An Integrated Flow Reactor-Membrane Filtration System for Heterogenous Photocatalysis. Part II: Experiments on the Ultrafiltration Unit and Combined Operation”, J. Appl. Electrochem., Vol. 29, pp. 1111-1118 (1999)

Spurr, R. A., and Myers, H., “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer”, Anal. Chem., Vol. 29, pp. 760-762 (1957)

Stylidi, M., Kondarides, D. I., and Verykios, X. E., “Pathways of Solar Light-induced Photocatalytic Degradation of Azo Dyes in Aqueous TiO2 Suspensions”, Appl. Catal. B, Vol. 40, pp. 271 (2003)

Subramanian, V., Kamat, P. V., and Wolf, E. E., “Mass-Transfer and Kinetic Studies during the Photocatalytic Degradation of an Azo Dye on Optically Transparent Electrode Thin Film”, Ind. Eng. Chem. Res., Vol. 42, pp. 2131-2138 (2003).

Tanaka, K., Hisanaga, T., and Rivera, A., “Effect of Crystal Form of TiO2 on the Photocatalytic Degradation of Pollutants”, Photocatalytic Treatment of Water and Air, Elsevier Science Publishers, B.V. Amsterdam, pp. 169-178 (1993)

Thomas, R. R., “Wetting Kinetics of Modified Polyimide Surfaces: Interactions with Polar Solvents”, J. Colloid Interface Sci., Vol. 279, pp. 515-522 (2004)

Tsuru, T., Kan-no, T., Yoshioka, T., and Asaeda, M., “A Photocatalytic Membrane Reactor for a Gas-phase Reactions using Porous Titanium Oxide Membranes”, Catal. Today, Vol. 82, pp. 41-48 (2003).

Wang, W., and Ku, Y., “The Light Transmission and Distribution in an Optical Fiber Coated with TiO2 Particles”, Chemosphere, Vol. 50, pp. 999-1006 (2003)

Wang, W., Chiang, L. W., and Ku, Y., “Decomposition of Benzene in Air Streams by UV/TiO2 Process”, J. Hazard. Mater. B, Vol. 101, pp. 133-146 (2003)

Wu, C. H., “Comparison of Azo Dye Degradation Efficiency Using UV/Single Semiconductor and UV/Coupled Semiconductor Systems”, Chemosphere, Vol. 57, pp.601-608 (2004)

Wu, C. H., Chien, G.. P. C., and Lee, W. S., “Photodegradation of Polychlorinated Dibenzo-p-Dioxins: Comparison of Photocatalysts”, J. Hazard. Mater, Vol. B114, pp. 191-197 (2004)

Yatmaz, H. C., Akyol, A., and Bayramoglu, M., “Kinetics of the Photocatalytic Decolorization of an Azo Reactive Dye in Aqueous ZnO Suspensions”, Ind. Eng. Chem. Res., Vol. 43, pp. 6035-6039 (2004).

Yatmaz, H. C., Wallis, C., Howarth, C. R., “The Spinning Disc Reactor- Studies on a Novel TiO2 Photocatalytic Reactor”, Chemosphere, Vol. 42, pp. 397-403 (2001).

Yu, J. G., Yu, H. G., Cheng, B., Zhao, X. J., Yu, J. Y., and Ho, W. K., “The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition”, J. Phys. Chem. B, Vol. 107, pp. 13871-13879 (2003)

Zainal, Z., Saravanan, N., and Fang, N.S., “Electrochemical Assisted hotodegradation of Oxalate Ions Using Sol-Gel Coated TiO2 on ITO Glass”, Mater. Sci. Eng, B, Vol. 111, pp. 57-63, (2004)

Zan, L., Peng, Z. H., Xia, Y. L., and Huang, L., “Novel Route to Prepare TiO2-Coated Ceramic and Its Photocatalytic Function”, J. Mater. Sci., Vol. 39, pp. 761-763 (2004)

Zhang, M., An, T., Hu, X., Wang, C., Sheng, G, and Fu, J., “Preparation and Photocatalytic Properties of a Nanometer ZnO-SnO2 Coupled Oxide”, Appl. Catal. A: General, Vol 260, pp. 215-222 (2004)

Zhou, M., Yu, J., Cheng, B., and Yu, H., “Preparation and Photocatalytic Activity of Fe-doped Mesoporous Titanium Dioxide Nanocrystalline Photocatalysts”, Mater. Chem. Phys., Vol. 93, pp.159-163 (2005)

Zhou, S., and Ray, A.K., “Kinetic Studies for Photocatalytic Degradation of Eosin B on a Thin Film of Titanium Oxide”, Ind. Eng. Chem. Res., Vol. 42, pp.6020-6033 (2003).

QR CODE