簡易檢索 / 詳目顯示

研究生: 陳南宏
Nan-hung Chen
論文名稱: 釤摻雜對二氧化鈰奈米顆粒之氧化還原行為及缺陷結構的影響
Effect of Sm Doping on the Redox Behavior and Defect Structure of Cerium Oxide Nanoparticles
指導教授: 陳詩芸
Shih-yun Chen
口試委員: 陳良益
Liang-yih Chen
宋振銘
Jenn-ming Song
郭永綱
Yung-kang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 二氧化鈰退火處理X光吸收光譜程式升溫還原
外文關鍵詞: CeO2, Sm, annealing treatment, XAS, TPR
相關次數: 點閱:272下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用沉澱法製備未摻雜、摻雜5at% Sm(釤)及摻雜11at% Sm(釤)之二氧化鈰奈米顆粒,並於300℃下不同氣氛(O2、Ar+H2)中進行退火處理,探討Sm之摻雜對二氧化鈰奈米顆粒之氧化還原行為的影響。此外,將經過氧化及還原退火處理之釤摻雜二氧化鈰(Sm-doped CeO2)進行程式升溫還原(TPR)分析,觀察不同缺陷含量之Sm-doped CeO2在不同溫度下與氫氣反應之情形,並可瞭解氧空缺之分佈情況。樣品之結構、粒徑及元素之價態則以X光繞射儀(XRD)、場發射穿透式電子顯微鏡(TEM),及X光吸收光譜(X-ray Absorption Spectroscopy,XAS)進行分析。
研究結果顯示:在氧化(O2)退火下,Sm之摻雜會不利於氧化(oxidation)反應之進行;在還原(Ar+H2)退火下,Sm之摻雜會提升還原(reduction)反應之能力。藉由TPR分析得知,5at% Sm經還原退火後之樣品,Sm3+傾向集中於結構內部。11at% Sm經氧化處理後,結構表層之Sm3+除了會促使還原反應之外,亦會使CeO2整體氧離子遷移率下降。


In this study, the undoped, 5at% Sm-doped and 11at% Sm-doped CeO2 nanoparticles were prepared by the co-precipitation methods. The samples were annealed in different atmospheres (O2, Ar+H2) at 300oC to discuss the effect of Sm doping on redox behavior of CeO2 nanoparticles. In addition, the Sm-doped CeO2 samples under different annealing treatment were analyzed via TPR(Temperature Programmed Reduction) to observe the relationship between temperature and H2 reaction. Furthermore, we can realize the distribution of oxygen vacancies by TPR analysis. The structure, particle size and elemental valence state of the sample were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), and X-ray absorption spectroscopy (XAS).
The experimental results show that: under oxidative (O2) annealing treatment, the doping of Sm would be detrimental to the oxidation reaction. Under reductive (Ar+H2) annealing treatment, the doping of Sm would be beneficial to the reduction reaction. Through TPR analysis, the Sm3+ of 5at% Sm under reductive annealing treatment tend to aggregate in the bulk. However, the Sm3+ of 11at% Sm under oxidative annealing treatment tend to appear on the surface which is beneficial to the reductive reaction. Moreover, Sm3+ makes the oxygen mobility declined.

摘要 I Abstract II 目 錄 III 圖索引 V 表索引 VII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機與目的 3 第二章 文獻回顧與理論介紹 5 2.1磁性理論 5 2.1.1 磁性來源 5 2.1.2 雙交換機制(Double exchange mechanism ; DE) 9 2.1.3 磁性質之分類 12 2.2 稀磁性半導體研究背景 14 2.3 二氧化鈰的基本性質 18 2.3.1 物理性質及晶體結構 18 2.3.2 光學性質 19 2.3.3 化學性質 19 2.4 二氧化鈰製備方法 21 2.4.1物理法 21 2.4.2化學法 22 2.5 利用沉澱法製備二氧化鈰奈米顆粒 25 2.6 二氧化鈰的應用 28 2.7 釤摻雜二氧化鈰的研究現況 30 2.8 程式升溫還原(Temperature Programmed Reduction) 31 第三章 實驗方法 33 3.1 藥品及氣體 33 3.2 二氧化鈰奈米顆粒之製備 34 3.2.1 未摻雜之二氧化鈰奈米顆粒 34 3.2.2 摻雜釤之二氧化鈰奈米顆粒 35 3.3 二氧化鈰奈米顆粒之熱處理 36 3.4 分析方法及樣品前處理 37 3.4.1 XRD分析 37 3.4.2 TEM分析 37 3.4.3 XAS分析 38 3.4.4 TPR分析 41 3.4.5 Raman分析 42 第四章 結果與討論 43 4.1釤摻雜對二氧化鈰奈米顆粒之結構影響 43 4.1.1 XRD分析 43 4.1.2 XAS分析 43 4.1.2.1 Ce L3-edge 43 4.1.2.2 Sm L3-edge 46 4.1.2.3 O K-edge 46 4.1.3 Raman光譜分析 47 4.2氧化反應對釤摻雜之二氧化鈰奈米顆粒結構的影響 50 4.2.1 XRD及TEM分析 50 4.2.2 XAS分析 52 4.2.3 Raman分析 56 4.3還原反應對二氧化鈰奈米顆粒結構的影響 61 4.3.1 XRD及TEM分析 61 4.3.2 XAS分析 63 4.3.3 Raman分析 67 4.4程式升溫還原分析:不同退火條件之釤摻雜二氧化鈰奈米顆粒 71 4.4.1 Undoped CeO2之TPR分析 71 4.4.2 摻雜5at% Sm-CeO2 之TPR分析 72 4.4.3 摻雜11at% Sm-CeO2 之TPR分析 74 4.4.4 TPR對CeO2樣品之影響 76 4.4.4.1 XRD分析 76 4.4.4.2 XAS分析 78 4.4.4.3綜合討論 81 第五章 結論 83 參考文獻 84

[1]胡裕民,「III-V 稀磁性半導體薄膜之研究與發展」,物理雙月刊,第二六卷,第四期,第587-598頁 (2004)
[2] 許華書、黃榮俊,「以3d過渡金屬摻雜氧化物之稀磁性半導體研究」物理雙月刊,第二十六卷,第四期,第599-606頁 (2004)
[3] R. Janisch, P. Gopal, and N. A. Spaldin, Journal of Physics: Condensed Matter, Vol. 17, pp. 657 (2005)
[4] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, Vol. 287, pp. 1019 (2000)
[5] W. K. Park, R. J. Ortega-Hertogs, J. S. Moodera, A. Punnoose, and M. S. Seehra, Journal of Applied Physics, Vol. 91, pp. 8093 (2002).
[6] Y. Matsumoto, R Takahashi, M Murakami, Japanese Journal of Applied Physics, Part 2, Vol. 40, pp. 1204 (2001)
[7] M. Venkatesan, C. B. Fitzgerald ,J. M. D. Coey, NATURE, Vol. 430,pp. 630 (2004)
[8] 趙李益,「氧化釔的添加對 Sr2FeMoO6導電機構的影響」,國立成功大學材料科學及工程學系,碩士論文 (2009)
[9] 盧盈靜, 「鋇、鋁的添加對 La2/ 3Ca1/3 MnO3之導電機構及磁阻效應之影響」,國立成功大學材料科學及工程學系,碩士論文 (2002)
[10] C. Zener, Physical Review, Vol. 81, pp. 440 (1951)
[11] R. Janischand and N. A. Spaldin, Physical Review B, Vol.73, pp. 035201 (2006)
[12] H. S. Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 88, pp. 242507 (2006)
[13] H. S. Hsu and J. C. A. Huang, Applied Physical Letters, Vol. 90, pp. 102606 (2007)
[14] M. Y. Ge, H. Wang, E. Z. Lin, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Applied Physical Letters, Vol. 93, pp. 062505 (2008)
[15] P. Loof, B. Kasemo, K.E. Keck, Oxygen storage capacity of noble metal car exhaust catalysts containing nickel and cerium, Journal of Catalysis 118 (2) (1989) 339
[16] M. Boaro, M. Vicario, C. de Leitenburg, G. Dolcetti, A. Trovarelli, The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based, model three-way catalysts, Catalysis Today 77 (4) (2003) 407
[17] S.C. 著,張煦、李學養譯, 磁性物理學, 聯經出版社 (1982).
[18] 郭光揚, 二氧化鈦薄膜室溫鐵磁性來源之研究, 國立成功大學物理研究所碩士論文 (2007).
[19] 戴道生、錢昆明等, 鐵磁學, 科學出版社 (2000).
[20] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat Mater 4 (2) (2005) 173
[21] D.J. Priour, Jr., E.H. Hwang, S. Das Sarma, Disordered rkky lattice mean field theory for ferromagnetism in diluted magnetic semiconductors, Physical Review Letters 92 (11) (2004) 117201.
[22] C. Zener, Interaction between the d shells in the transition metals, Physical Review 81 (3) (1951) 440
[23] 蔡銘宮, N-type 薄膜 (La0.7Ce0.3MnO3) 成長與特性研究, 國立中山大學物理學系研究所碩士論文 (2008).
[24] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-y. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide, Science 291 (5505) (2001) 854
[25] N.H. Hong, J. Sakai, A. Ruyter, V. Brize, Does Mn doping play any key role in tailoring the ferromagnetic ordering of TiO2 thin films, Applied Physics Letters 89 (25) (2006) 252504.
[26] N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films, Physical Review B 72 (4) (2005) 045336.
[27] N.H. Hong, J. Sakai, N. Poirot, V. Brize, Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films, Physical Review B 73 (13) (2006) 132404.
[28] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides, Physical Review B 74 (16) (2006) 161306.
[29] M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, S. Yan, Relationship between the surface chemical states and magnetic properties of CeO2 nanoparticles, Applied Physics Letters 94 (15) (2009) 152511.
[30] N.H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, F. Gervais, Ferromagnetism in transition-metal-doped TiO2 thin films, Physical Review B 70 (19) (2004) 195204.
[31] Y.Q. Song, H.W. Zhang, Q.Y. Wen, H. Zhu, J.Q. Xiao, Co doping effect on the magnetic properties of CeO2 films on Si(111) substrates, Journal of Applied Physics 102 (4) (2007) 043912.
[32] H.-W.Z. Qi-Ye Wen, Yuan-Qiang Song, Qing-Hui Yang, Hao Zhu and John Q Xiao, Room-temperature ferromagnetism in pure and Co doped CeO2 powders, Journal of Physics: Condensed Matter 19 (2007) 246205.
[33] Z.D.-M. M. Radovi, N. Paunovi, M. Šepanovi, B. Matovi and Z.V. Popovi, Effect of Fe2+ (Fe3+) Doping on structural properties οf CeO2 nanocrystals ,Acta Physica Polonica A 116 (2009) 84.
[34] N.V. Skorodumova, R. Ahuja, S.I. Simak, I.A. Abrikosov, B. Johansson, B.I. Lundqvist, Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles, Physical Review B 64 (11) (2001) 115108.
[35] S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route, Materials Chemistry and Physics 115 (1) (2009) 423.
[36] 張宏毅, 二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性, 國立成功大學化學工程學系博士論文 (2005).
[37] P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Structure-dependent electronic properties of nanocrystalline cerium oxide films, Physical Review B 68 (3) (2003) 035104.
[38] M. Sugiura, Oxygen Storage materials for automotive catalysts: Ceria-Zirconia solid solutions, Catalysis Surveys from Asia 7 (1) (2003) 77.
[39] Z.L. Yinglin Liu, Azizan Aziz and Judith MacManus-Driscoll, Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies, Journal of Physics: Condensed Matter 20 (2008) 165201.
[40] G.L. Xiaobo Chen, Yiguo Su, Xiaoqing Qiu, Liping Li and Zhigang Zou, Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping, Nanotechnology 20 (2009) 115606.
[41] V. Boffa, T. Petrisor, S. Ceresara, L. Ciontea, F. Fabbri, P. Scardi, Laser-ablation deposition of CeO2 thin films on biaxially textured nickel substrates, Physica C: Superconductivity 312 (3–4) (1999) 202.
[42] L. Wu, H.J. Wiesmann, A.R. Moodenbaugh, R.F. Klie, Y. Zhu, D.O. Welch, M. Suenaga, Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size, Physical Review B 69 (12) (2004) 125415.
[43] J. Liu, L. Wang, H. Wu, L. Mo, H. Lou, X. Zheng, Synthesis and characterization of CeO2; by the hydrothermal method assisted by carboxymethylcellulose sodium, Reaction Kinetics and Catalysis Letters 98 (2) (2009) 311.
[44] D.-S. Bae, B. Lim, B.-I. Kim, K.-S. Han, Synthesis and characterization of ultrafine CeO2 particles by glycothermal process, Materials Letters 56 (4) (2002) 610.
[45] K.J.L. Srivatsan Sathyamurthy, Reza T Dabestani and M Parans Paranthaman, Reverse micellar synthesis of cerium oxide nanoparticles, Nanotechnology 16 (2005) 1960.
[46] S. Gopalan, S.C. Singhal, Mechanochemical synthesis of nano-sized CeO2, Scripta Materialia 42 (10) (2000) 993.
[47] 連昭晴, 鐵/金核殼型磁性複合奈米粒子之製備與應用, 國立成功大學化學工程學系 (2004).
[48] N. Laosiripojana, S. Assabumrungrat, Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst, Applied Catalysis B: Environmental 66 (1–2) (2006) 29.
[49] X.-D. Zhou, W. Huebner, H.U. Anderson, Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2, Applied Physics Letters 80 (20) (2002) 3814.
[50] P.-L. Chen, I.W. Chen, Reactive cerium(iv) oxide powders by the homogeneous precipitation method, Journal of the American Ceramic Society 76 (6) (1993) 1577.
[51] J.-G. Li, T. Ikegami, Y. Wang, T. Mori, Reactive ceria nanopowders via carbonate precipitation, Journal of the American Ceramic Society 85 (9) (2002) 2376.
[52] S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya, T. Fukuda, Structural study on monosize CeO2-x nano-particles, Nanostructured Materials 11 (1) (1999) 141.
[53] J. L. G. Fierro, S. Mendioroz, A.M. Olivan, Surface chemistry of cerium oxide prepared by an isobaric thermal procedure, Journal of Colloid and Interface Science 107 (1) (1985) 60.
[54] 李秋煌, 改善生活的仙丹, 科學發展 370 (2003) 29.
[55] T. Morimoto, H. Tomonaga, A. Mitani, Ultraviolet ray absorbing coatings on glass for automobiles, Thin Solid Films 351 (1–2) (1999) 61.
[56] R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process, Solid State Ionics 151 (1–4) (2002) 235.
[57] S. Yabe, T. Sato, Cerium oxide for sunscreen cosmetics, Journal of Solid State Chemistry 171 (1–2) 7-11.
[58] P.A. Atanasov, T. Okato, R.I. Tomov, M. Obara, (110)Nd:KGW waveguide films grown on CeO2/Si substrates by pulsed laser deposition, Thin Solid Films 453–454 (0) (2004) 150.
[59] M. Shirakawa, J. Unno, K. Aizawa, M. Kusunoki, M. Mukaida, S. Ohshima, Fabrication and characterization of a CeO2 buffer layer on c-plane and tilt-c-plane sapphire substrates, Physica C: Superconductivity 392–396, Part 2 (0) (2003) 1346.
[60] N. Izu, W. Shin, N. Murayama, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder, Sensors and Actuators B: Chemical 93 (1–3) (2003) 449.
[61] N.M. Sammes, Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials, Solid State Ionics 100 (1–2) (1997) 39.
[62] O.A. Marina, C. Bagger, S. Primdahl, M. Mogensen, A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance, Solid State Ionics 123 (1–4) (1999) 199.
[63] Yahiro H., Eguchi Y., Eguchi K. and Arai H., J. Appl. Electroche., 18 (1987) 157.
[64] 謝文浩,氧化釤添加氧化鈰/氧化鋁擔體擔載同觸媒型一氧化碳氧化反應之研究,國立清華大學化工系,碩士論文 (1999)
[65] Brian C. H. Steele, Angelika Heinzel, NATURE,Vol.414,pp.345(2001).
[66] J. Hormes,M. Pantelouris,G.B. B Balazs,B.Rambabu,Vol.136, pp. 945 (2000).
[67] N.W. Hurst, S.J. Gentry, A. Jones, B.D. McNicol, Temperature programmed reduction, Catalysis Reviews 24 (2) (1982) 233.
[68] J. L. Falconer, J.A. Schwarz, Temperature-programmed desorption and reaction: applications to supported catalysts, Catalysis Reviews 25 (2) (1983) 141.
[69] W.R.A.M. Robinson, J.C. Mol, Characterization and catalytic activity of copper/alumina methanol synthesis catalysts, Applied Catalysis 44 (0) (1988) 165.
[70] J.H. Blank, J. Beckers, P.F. Collignon, G. Rothenberg, Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion, ChemPhysChem 8 (17) (2007) 2490.
[71] R. Craciun, Characterization of mixed amorphous/crystalline cerium oxide supported on SiO2, Solid State Ionics 110 (1–2) (1998) 83.
[72] P. Nachimuthu, W.-C. Shih, R.-S. Liu, L.-Y. Jang, J.-M. Chen, The study of nanocrystalline cerium oxide by x-ray absorption spectroscopy, Journal of Solid State Chemistry 149 (2) (2000) 408.
[73] S.G.a.M. Reichling, Structural elements of CeO2(111) surfaces, Nanotechnology 18 (2007) 044024.
[74] Z. Yang, Q. Wang, S. Wei, D. Ma, Q. Sun, The effect of environment on the reaction of water on the ceria(111) surface: A DFT+U study, The Journal of Physical Chemistry C 114 (35) (2010) 14891.
[75] 葉承霖,由 X 光吸收光譜探討以 Fe 當催化層奈米碳管之電子結構,私立淡江大學物理學系研究所,碩士論文 (2000)
[76] Biswajit Choudhury and Amarjyoti Choudhury,Current Applied Physics, Vol. 13, pp. 217-223 (2013).
[77] Y. Xin, Y. Qi and X. Ma, Materials Letters, Vol. 64, pp. 2659 (2010).
[78] M.-F. Luo, Y.-J. Zhong, X.-X. Yuan, X.-M. Zheng, TPR and TPD studies of CuOCeO2 catalysts for low temperature CO oxidation, Applied Catalysis A: General 162 (1–2) (1997) 121.
[79] J.B. Wang et al. / Applied Catalysis A: General 203 (2000) 191–199.

無法下載圖示 全文公開日期 2018/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE