簡易檢索 / 詳目顯示

研究生: Shamik Chaudhuri
Shamik Chaudhuri
論文名稱: A study on superhydrophilic copolymers for the application of moisture management and sewage treatment
A study on superhydrophilic copolymers for the application of moisture management and sewage treatment
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 吳昌謀
Chang-Mou Wu
今榮東洋子
Toyoko Imae
Ching-Yuan Su
Ching-Yuan Su
Chi-Chin Kuo
Chi-Chin Kuo
郭東昊
Dong-Hau Kuo
Bin-Chang Kuo
Bin-Chang Kuo
Chi-Hsu Yao
Chi-Hsu Yao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 161
中文關鍵詞: 智能聚合物熱響應低臨界溶液溫度潤濕性智能紡織品聚合物膜靜電紡絲螢光金屬離子感測氣凝膠光催化
外文關鍵詞: Smart polymers, Thermoresponsive, Lower critical solution temperature, Wettability, Smart textile, Polymer membranes, Electrospinning, Fluorescence, Metal ion sensing, Aerogel, Photocatalysis
相關次數: 點閱:384下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

超親水聚合物,它們在不同的結構中可以有很多不同的應用,其中水吸收是主要被關注的應用。由於其對水的高親和性,該聚合物可以根據我們的要求來調整。本文重點介紹了超親水性聚合物及其在水分控制,金屬離子感測和光催化活性降解水溶液中的有機污染物。
在第一部分中,我們通過自由基聚合反應合成了 poly[(N-isopropylacrylamide)-co-(2- hydroxyethylmethacrylate)-co-(N-methylolacrylamide)] [poly(NIPAAm-co-HEMA-co- NMA)]的無規共聚物。以 NIPAAm,HEMA 和 NMA 為架構,分別提供熱響應性,吸水率和水分保留率控制以及化學交聯,以實現在水性介質中的穩定性。
由於NIPAAm 低臨界溶液溫度的特性,其在 25℃至 40℃之間會顯著的體積變化(親水/疏水性),該共聚物也表現出隨溫度變化,其光透射率也跟著改變。接著我們將共聚物線棒塗佈在聚對苯二甲酸乙二酯(PET)織物上,並測試了塗層織物在不同溫度下的濕潤性及水分吸收和釋放。其結果在 20°C 和 37°C 下,P2 共聚物具有最高的吸濕和釋放能力。因此,具有定制性能的共聚物可以用作特定活動服裝的智能紡織品。
在第二部分中,我們開發出對 Co2 +和 Cu2 +離子具有高靈敏度的開/關可切換的新型奈 米 纖 維 膜 。 其 研 究 通 過 電 紡 製 備 poly[(2-hydroxyethylmethacrylate-co-N- methylolacrylamide)]

[poly(HEMA-co-NMA)]的奈米纖維膜並在其中混摻不同含量的 2,2’- bipyridine-3,3’-diol (BPDO),其中通過自由基聚合反應合成不同摩爾比的 Poly(HEMA-co-NMA)。添加HEMA 和 NMA 以促進親水性和交聯反應,最終支持水性介質中的機械穩定結構。並以電紡奈米纖維膜 S1-0.5 (HEMA:NMA = 77:23, BPDO 的 0.5 wt%) 於濃度範圍為 10-7 M 至 10-4 M 的 Co2 +和 Cu2 +離子時,顯示出強光致發光猝滅。當添加 Cu2 +離子和乙二胺四乙酸(EDTA)時,奈米纖維膜表現出可逆的開/關螢光發光特性。這些結果以簡單的製程方式製造奈米纖維膜,且該膜具有對金屬離子的實時感測具有相當的潛力。
在第三部分中,我們通過冷凍乾燥法製備了高比表面積,低密度的乙烯醇(PVA)/奈米纖維素(CNF)摻混 WO2.72-Fe3O4 粉體的氣凝膠(NC-CNF),並研究了其對於甲基橙再模擬太陽光催化降解的特性。在該系統中,WO2.72-Fe3O4 是奈米複合光催化劑並結合聚乙烯醇(PVA)的高親水性,使其增強了吸收污水以提高光催化性能的能力。此氣凝膠也利用戊二醛使纖維素奈米纖維和 PVA 進行化學交聯,以使其在水溶液中結構穩定。此研究探討了 MO 的降解動力學並比較了 WO2.72-Fe3O4 粉末(NC),纖維素奈米纖維氣凝膠(CNF)和 NC-CNF 的光催化性能。


Superhydrophilic polymers, in their different structural forms can be utilized in wide range of applications where water absorption is the prime interest. Due to their high affinity towards water, such polymers can be tuned according to our requirement. Herein, the dissertation highlights superhydrophilic polymers and their tunable structure-property relation for moisture management, metal ion sensing and photocatalytic activity for the degradation of organic pollutants in aqueous solution.

In first section, we synthesized a random poly[(N-isopropylacrylamide)-co-(2- hydroxyethylmethacrylate)-co-(N-methylolacrylamide)] [poly(NIPAAm-co-HEMA-co- NMA)] copolymer through free-radical polymerization. The NIPAAm, HEMA and NMA moieties were framed to provide thermoresponsiveness, water absorption and retention control, and chemical cross-linking to achieve stability in aqueous medium, respectively. The copolymer showed a significant change in optical transmittance with a variation in temperature due to the change in volume (i.e., hydrophilic/hydrophobic) between 25 °C and 40 °C, attributed to the lower critical solution temperature property of the NIPAAm moiety. The copolymers were wire-bar-coated onto knitted polyethylene terephthalate (PET) fabric. Variation in the water contact angle affirmed the switchable wettability due to the change in temperature. We tested the coated fabrics for moisture absorption and release at different temperatures. The results at 20 °C and 37 °C indicated that the P2 copolymer had the highest moisture absorption and release capability. Therefore, the copolymers with tailored properties can be used as smart textiles for activity specific clothing.
In the second section, the study presents new on/off switchable nanofiber membranes with high sensitivity for detecting Co2+ and Cu2+ ions. The nanofiber membranes were fabricated by electrospinning the poly[(2-hydroxyethylmethacrylate-co-N-methylolacrylamide)] [poly(HEMA-co-NMA)] copolymer with different quantities of 2,2’- bipyridine-3,3’-diol

(BPDO). Poly(HEMA-co-NMA) random copolymers with various molar ratios of the HEMA and NMA monomers were synthesized by free radical polymerization. The HEMA and NMA moieties were specifically selected to promote hydrophilicity and cross-linking reactions, which ultimately support a mechanically stable structure in aqueous media. ES nanofiber membranes S1-0.5, with a HEMA:NMA molar ratio of 77:23 and 0.5 wt% of BPDO showed strong photoluminescence quenching upon exposure to Co2+ and Cu2+ ions at concentrations ranging from 10-7 M to 10-4 M. Moreover, the nanofiber membranes exhibited reversibile on/off fluorescence emission properties upon the sequential addition of Cu2+ ions and ethylenediaminetetraacetic acid (EDTA). These results demonstrate a simple fabrication strategy for nanofiber membranes that have the potential to be effective for the real-time sensing of metal ions.
In the third section, we fabricated a high specific surface area, low density WO2.72-Fe3O4 nanocomposites-blended polyvinyl alcohol/ cellulose nanofiber aerogel (NC-CNF) through freeze drying method and photocatalytic performance of the aerogel has been studied considering methyl orange (MO) as a model pollutant in aqueous solution under solar irradiation. In this system, WO2.72-Fe3O4 is nanocomposite photocatalyst. Polyvinyl alcohol (PVA) enhanced the ability of absorbing polluted water to increase the photocatalytic performance due to its high hydrophilicity. The aerogel has been chemically cross-linked with cellulose nanofiber and PVA by glutaraldehyde in order to make it structurally stable in aqueous solution. The photocatalytic performance of WO2.72-Fe3O4 powder (NC), cellulose nanofiber aerogel (CNF) and NC-CNF has been compared and also kinetics of degradation of MO has been studied.

摘要 i Abstract iii Acknowledgement vi Table of Contents vii Index of symbol x List of Figures xi List of Tables xiii 1.0. INTRODUCTION 1 1.1. Superhydrophilicity and superhydrophobicity 1 1.2. Sewage water treatment 2 1.3. Motivation and objective 6 2.0. BACKGROUND AND LITERATURE REVIEW 9 2.1. Stimuli-responsive polymers 9 2.1.1. Thermoresponsive polymers 10 2.1.2. pH responsive polymers 11 2.1.3. Photo-responsive polymers 13 2.1.4. Electric and magnetic field responsive polymers 14 2.2. LCST property of PNIPAAm 16 2.3. Application of PNIPAAm based polymers 19 2.3.1. Biomedical application 19 2.3.2. Moisture control and smart textile application 21 2.3.3. Other applications 22 2.4. Poly(2-hydroxyethylmethacrylate) [poly(HEMA)] 23 2.5. Cross-linking phenomena 24 2.6. Metal-ion sensing materials 25 2.7. Metal-ion sensing mechanism 26 2.8. Electrospinning 28 2.9. Photocatalysis and photocatalyst materials 29 2.10. CNF aerogels 30 2.10.1. Synthesis of CNF aerogels 30 2.10.2. Properties of CNF aerogels 32 2.11. Application of CNF aerogels 33 2.11.1. Thermal insulation and flame retardancy 33 2.11.2. CO2 capture 34 2.11.3. Oil-water separation 34 2.11.4. Photocatalysis 35 3.0. SWITCHABLE WETTABILITY OF POLY (NIPAAM-CO-HEMA-CO-NMA) COATED PET FABRIC FOR MOISTURE MANAGEMENT 37 3.1. Introduction 37 3.2. Experiment 41 3.2.1. Materials 41 3.2.2. Synthesis of poly(NIPAAm-co-HEMA-co-NMA) 41 3.2.2.1. Synthesis of P1 42 3.2.2.2. Synthesis of P2 42 3.2.3. Fabrication of copolymer coated knitted PET fabrics 43 3.2.4. Characterization 43 3.3. Results and discussion 45 3.3.1. NMR spectroscopy 45 3.3.2. FTIR spectroscopy 47 3.3.3. Thermal behavior 48 3.3.4. LCST... 50 3.3.5. Swelling test 52 3.3.6. Surface wettability 52 3.3.7. Moisture management 55 3.3.8. Mechanical property 56 3.4. Summary 57 4.0. HIGHLY SENSITIVE ELECTROSPUN POLY(HEMA-CO-NMA)/BPDO NANOFIBER MEMBRANES FOR SENSING METAL IONS IN AQUEOUS MEDIA 58 4.1. Introduction 58 4.2. Experiment 62 4.2.1. Materials 62 4.2.2. Synthesis of poly(HEMA-co-NMA) 62 4.2.3. Fabrication of cross-linked ES nanofiber membranes 65 4.2.4. Characterization 66 4.3. Result and discussion 67 4.3.1. NMR spectroscopy 67 4.3.2. FTIR spectroscopy 69 4.3.3. Metal ion selection by BPDO…………………………………………………………....70 4.3.4. Morphology of ES nanofiber membranes .71 4.3.5. Detection of different concentration of metal ions by BPDO 73 4.3.6. Detection of metal ions by S1-0.5 ES nanofiber membranes 77 4.3.7. Comparison of the fluorescence responses of ES nanofiber membranes and BPDO in solution state 79 4.3.8. Reversibility and stability of the ES S1-0.5 nanofiber membranes 81 4.3.9. Schematic of S1-0.5 ES nanofiber membranes for sensing application 82 4.4. Summary 85 5.0. ADSORPTION AND DEGRADATION OF ORGANIC DYE BY WO2.72-Fe3O4 MODIFIED CNF AEROGEL 87 5.1. Introduction 87 5.2. Experimental 90 5.2.1. Materials 90 5.2.2. Synthesis of WO2.72-Fe3O4 (NC) nanocomposites 91 5.2.3. Fabrication of NC-CNF and CNF aerogel 91 5.2.4. Characterization 92 5.2.5. Evaluation of photocatalytic activity 92 5.3. Result and discussion 92 5.3.1. Morphology 92 5.3.2. Physical properties 93 5.3.3. Photocatalytic activity 94 5.4. Summary 96 6.0. CONCLUSION AND OUTLOOK 97 6.1. Conclusion 97 6.2. Outlook 99 References 100

[1] B. Majhy, R. Iqbal, A. Sen, Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic–superhydrophilic surface, Scientific Reports 8(1) (2018) 1-11.
[2] B. Majhy, R. Iqbal, R. Gaikwad, A. Sen, Dynamics of capillary flow in an open superoleophilic microchannel and its application to sensing of oil, Microfluidics and Nanofluidics 22(10) (2018) 116.
[3] Z.-X. Wang, C.-H. Lau, N.-Q. Zhang, Y.-P. Bai, L. Shao, Mussel-inspired tailoring of membrane wettability for harsh water treatment, Journal of Materials Chemistry A 3(6) (2015) 2650-2657.
[4] N. Thakur, A. Baji, A.S. Ranganath, Thermoresponsive electrospun fibers for water harvesting applications, Applied Surface Science 433 (2018) 1018-1024.
[5] P. Gould, Smart, clean surfaces, Materials Today 6(11) (2003) 44-48.

[6] T.-J. Ko, E. Kim, S. Nagashima, K.H. Oh, K.-R. Lee, S. Kim, M.-W. Moon, Adhesion behavior of mouse liver cancer cells on nanostructured superhydrophobic and superhydrophilic surfaces, Soft Matter 9(36) (2013) 8705-8711.
[7] X. Tian, S. Shaw, K.R. Lind, L. Cademartiri, Thermal processing of silicones for green, scalable, and healable superhydrophobic coatings, Advanced Materials 28(19) (2016) 3677- 3682.
[8] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1(1) (2000) 1-21.
[9] J. Zang, C.M. Li, S.-J. Bao, X. Cui, Q. Bao, C.Q. Sun, Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network, Macromolecules 41(19) (2008) 7053-7057.

[10] M.S. Hosseini, M.T. Sadeghi, M. Khazaei, Wettability alteration from superhydrophobic to superhydrophilic via synthesized stable nano-coating, Surface and Coatings Technology 326 (2017) 79-86.
[11] H. Liu, L. Feng, J. Zhai, L. Jiang, D. Zhu, Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity, Langmuir 20(14) (2004) 5659-5661.
[12] G.R. Chagas, D.E. Weibel, UV-induced switchable wettability between superhydrophobic and superhydrophilic polypropylene surfaces with an improvement of adhesion properties, Polymer Bulletin 74(6) (2017) 1965-1978.
[13] T. Chen, Q. Fang, Q. Zhong, Y. Chen, J. Wang, Synthesis and thermosensitive behavior of polyacrylamide copolymers and their applications in smart textiles, Polymers 7(5) (2015) 909-920.
[14] B. Wang, Z. Guo, W. Liu, pH-responsive smart fabrics with controllable wettability in different surroundings, RSC Advances 4(28) (2014) 14684-14690.
[15] S. Mondal, Phase change materials for smart textiles–an overview, Applied Thermal Engineering 28(11-12) (2008) 1536-1550.
[16] H. Ahmad, M. Sultana, M. Alam, M. Rahman, K. Tauer, M. Gafur, M. Sharafat, Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field, Express Polymer Letters 10(8) (2016).
[17] Y. Wang, C. Lai, H. Hu, Y. Liu, B. Fei, J.H. Xin, Temperature-responsive nanofibers for controllable oil/water separation, RSC Advances 5(63) (2015) 51078-51085.
[18] M. Constantin, M. Cristea, P. Ascenzi, G. Fundueanu, Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems, Express Polymer Letters 5(10) (2011) 839-848.

[19] G. Aragay, J. Pons, A. Merkoçi, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chemical Reviews 111(5) (2011) 3433-3458.
[20] A. Bitto, G. Pizzino, N. Irrera, F. Galfo, F. Squadrito, Epigenetic modifications due to heavy metals exposure in children living in polluted areas, Current Genomics 15(6) (2014) 464-468.
[21] J. Chen, P. Tong, Y. Lin, W. Lu, Y. He, M. Lu, L. Zhang, G. Chen, Highly sensitive fluorescent sensor for mercury based on hyperbranched rolling circle amplification, Analyst 140(3) (2015) 907-911.
[22] J. Zhang, Y. Wu, M. Xing, S.A.K. Leghari, S. Sajjad, Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides, Energy & Environmental Science 3(6) (2010) 715-726.
[23] R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review, Industrial & Engineering Chemistry Research 52(10) (2013) 3581- 3599.
[24] R. Sedghi, B. Heidari, M. Behbahani, Synthesis, characterization and application of poly (acrylamide-co-methylenbisacrylamide) nanocomposite as a colorimetric chemosensor for visual detection of trace levels of Hg and Pb ions, Journal of Hazardous Materials 285 (2015) 109-116.
[25] D. Liu, Z. Wang, X. Jiang, Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules, Nanoscale 3(4) (2011) 1421-1433.
[26] L. Mu, W. Shi, J.C. Chang, S.-T. Lee, Silicon nanowires-based fluorescence sensor for Cu (II), Nano letters 8(1) (2008) 104-109.
[27] A. Jaiswal, S.S. Ghsoh, A. Chattopadhyay, Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal, Langmuir 28(44) (2012) 15687-15696.

[28] Y. Lou, Y. Zhao, J. Chen, J.-J. Zhu, Metal ions optical sensing by semiconductor quantum dots, Journal of Materials Chemistry C 2(4) (2014) 595-613.
[29] N. Kumari, N. Dey, S. Jha, S. Bhattacharya, Ratiometric, reversible, and parts per billion level detection of multiple toxic transition metal ions using a single probe in micellar media, ACS Applied Materials & Interfaces 5(7) (2013) 2438-2445.
[30] W.-Y. Liu, H.-Y. Li, B.-X. Zhao, J.-Y. Miao, A new fluorescent and colorimetric probe for Cu2+ in live cells, Analyst 137(15) (2012) 3466-3469.
[31] M. Royzen, Z. Dai, J.W. Canary, Ratiometric displacement approach to Cu (II) sensing by fluorescence, Journal of the American Chemical Society 127(6) (2005) 1612-1613.
[32] H.N. Kim, Z. Guo, W. Zhu, J. Yoon, H. Tian, Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chemical Society Reviews 40(1) (2011) 79-93.
[33] Y. Shiraishi, R. Miyamoto, X. Zhang, T. Hirai, Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range, Organic letters 9(20) (2007) 3921-3924.
[34] D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors, Chemical Reviews 100(7) (2000) 2537-2574.
[35] C. Kaes, A. Katz, M.W. Hosseini, Bipyridine: the most widely used ligand. a review of molecules comprising at least two 2, 2 ‘-bipyridine units, Chemical Reviews 100(10) (2000) 3553-3590.
[36] S. Mandal, S. Ghosh, C. Banerjee, J. Kuchlyan, N. Sarkar, Unique photophysical behavior of 2, 2′-Bipyridine-3, 3′-diol in DMSO–water binary mixtures: potential application for fluorescence sensing of Zn2+ based on the inhibition of excited-state intramolecular double proton transfer, The Journal of Physical Chemistry B 117(40) (2013) 12212-12223.

[37] K. Rurack, R. Radeglia, Transition metal ion complexes of 2, 2′‐Bipyridyl‐3, 3′‐diol and 2, 2′‐Bipyridyl‐3‐ol: spectroscopic properties and solvent‐dependent binding modes, European Journal of Inorganic Chemistry 2000(10) (2000) 2271-2282.
[38] W.-C. Wu, H.-J. Lai, Preparation of thermo-responsive electrospun nanofibers containing rhodamine-based fluorescent sensor for Cu2+ detection, Journal of Polymer Research 23(11) (2016) 223.
[39] J.-T. Wang, Y.-C. Chiu, H.-S. Sun, K. Yoshida, Y. Chen, T. Satoh, T. Kakuchi, W.-C. Chen, Synthesis of multifunctional poly (1-pyrenemethyl methacrylate)-b-poly (N- isopropylacrylamide)-b-poly (N-methylolacrylamide) s and their electrospun nanofibers for metal ion sensory applications, Polymer Chemistry 6(12) (2015) 2327-2336.
[40] T. Wu, M. Ding, C. Shi, Y. Qiao, P. Wang, R. Qiao, X. Wang, J. Zhong, Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering, Chinese Chemical Letters 31(3) (2020) 617-625.
[41] Y. Chen, L. Sui, H. Fang, C. Ding, Z. Li, S. Jiang, H. Hou, Superior mechanical enhancement of epoxy composites reinforced by polyimide nanofibers via a vacuum-assisted hot-pressing, Composites Science and Technology 174 (2019) 20-26.
[42] G. Duan, A.R. Bagheri, S. Jiang, J. Golenser, S. Agarwal, A. Greiner, Exploration of macroporous polymeric sponges as drug carriers, Biomacromolecules 18(10) (2017) 3215- 3221.
[43] C.C. Kuo, Y.C. Tung, W.C. Chen, Morphology and pH sensing characteristics of new luminescent electrospun fibers prepared from poly (phenylquinoline)‐block‐ polystyrene/polystyrene blends, Macromolecular Rapid Communications 31(1) (2010) 65-70.
[44] C.-C. Kuo, C.-H. Lin, W.-C. Chen, Morphology and photophysical properties of light- emitting electrospun nanofibers prepared from poly (fluorene) derivative/PMMA blends, Macromolecules 40(19) (2007) 6959-6966.

[45] C.-C. Hung, C.-C. Kuo, N.-K. Weng, W.-C. Wu, B.-Y. Chen, C.-J. Cho, I.-J. Hsu, Y.-C. Chiu, W.-C. Chen, Novel highly sensitive and reversible electrospun nanofibrous chemosensor-filters composed of poly (HEMA-co-MNA) and bpy-F-bpy with metal-ion- modulated multicolor fluorescence emission, Polymer Journal 48(4) (2016) 439-449.
[46] W. Wang, Q. Yang, L. Sun, H. Wang, C. Zhang, X. Fei, M. Sun, Y. Li, Preparation of fluorescent nanofibrous film as a sensing material and adsorbent for Cu2+ in aqueous solution via copolymerization and electrospinning, Journal of Hazardous Materials 194 (2011) 185-192.
[47] T.F. Chala, C.-M. Wu, M.-H. Chou, Z.-L. Guo, Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation, ACS Applied Materials & Interfaces 10(34) (2018) 28955-28962.
[48] X. Wang, C. Drew, S.-H. Lee, K.J. Senecal, J. Kumar, L.A. Samuelson, Electrospun nanofibrous membranes for highly sensitive optical sensors, Nano Letters 2(11) (2002) 1273- 1275.
[49] H.-J. Lin, C.-Y. Chen, Thermo-responsive electrospun nanofibers doped with 1, 10- phenanthroline-based fluorescent sensor for metal ion detection, Journal of Materials Science 51(3) (2016) 1620-1631.
[50] L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review, Renewable and Sustainable Energy Reviews 76 (2017) 1393-1421.
[51] P.P. Kumavat, P. Sonar, D.S. Dalal, An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements, Renewable and Sustainable Energy Reviews 78 (2017) 1262-1287.
[52] A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering 2(1) (2014) 557-572.

[53] S. Rtimi, O. Baghriche, C. Pulgarin, R. Sanjines, J. Kiwi, New evidence for sputtered TiN- surfaces able to inactivate bacteria undervisible light, RSC Advances 2 (2012) 8591-8595.
[54] R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes, Industrial & Engineering Chemistry Research 48(23) (2009) 10262-10267.
[55] P. Wang, H. Tang, Y. Ao, C. Wang, J. Hou, J. Qian, Y. Li, In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation, Journal of Alloys and Compounds 688 (2016) 1-7.
[56] K. Tennakone, J. Bandara, Multiphoton semiconductor photocatalysis, Solar Energy Materials and Solar Cells 60(4) (2000) 361-365.
[57] A.H. Mamaghani, F. Haghighat, C.-S. Lee, Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art, Applied Catalysis B: Environmental 203 (2017) 247-269.
[58] S. Wang, K. Meng, L. Zhao, Q. Jiang, J. Lian, Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis, Ceramics International 40(4) (2014) 5107-5110.
[59] M. Lu, C. Shao, K. Wang, N. Lu, X. Zhang, P. Zhang, M. Zhang, X. Li, Y. Liu, p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties, ACS Applied Materials & Interfaces 6(12) (2014) 9004-9012.
[60] H. Maleki, N. Hüsing, Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: environmental protection aspects, Applied Catalysis B: Environmental 221 (2018) 530-555.
[61] H. Maleki, Recent advances in aerogels for environmental remediation applications: a review, Chemical Engineering Journal 300 (2016) 98-118.
[62] J. Fricke, T. Tillotson, Aerogels: production, characterization, and applications, Thin Solid Films 297(1-2) (1997) 212-223.

[63] R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: a state- of-the-art review, Energy and Buildings 43(4) (2011) 761-769.
[64] I.K. Holfort, F. Gran, J.A. Jensen, P2b-12 minimum variance beamforming for high frame- rate ultrasound imaging, 2007 IEEE Ultrasonics Symposium Proceedings, IEEE, 2007, pp. 1541-1544.
[65] S. Merlet, C. Marestin, F. Schiets, O. Romeyer, R. Mercier, Preparation and characterization of nanocellular poly (phenylquinoxaline) foams. A new approach to nanoporous high-performance polymers, Macromolecules 40(6) (2007) 2070-2078.
[66] M. Rajinipriya, M. Nagalakshmaiah, M. Robert, S. Elkoun, Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review, ACS Sustainable Chemistry & Engineering 6(3) (2018) 2807-2828.
[67] C. Harito, L. Utari, B.R. Putra, B. Yuliarto, S. Purwanto, S.Z.J. Zaidi, D.V. Bavykin, F. Marken, F.C. Walsh, Review—the development of wearable polymer-based sensors: perspectives, Journal of The Electrochemical Society 167(3) (2020) 037566.
[68] B.W. An, J.H. Shin, S.-Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.-G. Park, E. Cho,

S. Jo, J.-U. Park, Smart sensor systems for wearable electronic devices, Polymers 9(8) (2017) 303.
[69] M. Wei, Y. Gao, X. Li, M.J. Serpe, Stimuli-responsive polymers and their applications, Polymer Chemistry 8(1) (2017) 127-143.
[70] T.M. Reineke, Stimuli-responsive polymers for biological detection and delivery, ACS Macro Letters 5(1) (2016) 14-18.
[71] N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, Stimuli-responsive hydrogels in drug delivery and tissue engineering, Drug Delivery 23(3) (2016) 748-770.
[72] S. Municoy, M.I. Álvarez Echazú, P.E. Antezana, J.M. Galdopórpora, C. Olivetti, A.M. Mebert, M.L. Foglia, M.V. Tuttolomondo, G.S. Alvarez, J.G. Hardy, M.F. Desimone, Stimuli- responsive materials for tissue engineering and drug delivery, International Journal of Molecular Sciences 21(13) (2020) 4724.
[73] J. Hu, H. Meng, G. Li, S.I. Ibekwe, A review of stimuli-responsive polymers for smart textile applications, Smart Materials and Structures 21(5) (2012) 053001.
[74] J. Hu, S. Chen, A review of actively moving polymers in textile applications, Journal of Materials Chemistry 20(17) (2010) 3346-3355.
[75] X. Yang, L. Zhou, L. Lv, X. Zhao, L. Hao, Multi-stimuli-responsive poly(NIPA-co-HEMA- co-NVP) with spironaphthoxazine hydrogel for optical data storage application, Colloid and Polymer Science 294(10) (2016) 1623-1632.
[76] J.-K. Chen, C.-J. Chang, Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: a review, Materials 7(2) (2014) 805-875.
[77] Y. Liu, H. Du, L. Liu, J. Leng, Shape memory polymers and their composites in aerospace applications: a review, Smart Materials and Structures 23(2) (2014) 023001.
[78] F. Liu, M.W. Urban, Recent advances and challenges in designing stimuli-responsive polymers, Progress in Polymer Science 35(1) (2010) 3-23.
[79] Y. Kotsuchibashi, Recent advances in multi-temperature-responsive polymeric materials, Polymer Journal 52(7) (2020) 681-689.
[80] A. Palanisamy, S.A. Sukhishvili, Swelling transitions in layer-by-layer assemblies of UCST block copolymer micelles, Macromolecules 51(9) (2018) 3467-3476.
[81] S. Jana, M. Anas, T. Maji, S. Banerjee, T.K. Mandal, Tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH- induced UCST, Polymer Chemistry 10(4) (2019) 526-538.
[82] H. Zhang, J. Zhang, W. Dai, Y. Zhao, Facile synthesis of thermo-, pH-, CO2- and oxidation-responsive poly(amido thioether)s with tunable LCST and UCST behaviors, Polymer Chemistry 8(37) (2017) 5749-5760.
[83] Y. Kotsuchibashi, M. Ebara, T. Aoyagi, R. Narain, Recent advances in dual temperature responsive block copolymers and their potential as biomedical applications, Polymers 8(11) (2016) 380.
[84] M. Karimi, P. Sahandi Zangabad, A. Ghasemi, M. Amiri, M. Bahrami, H. Malekzad, H. Ghahramanzadeh Asl, Z. Mahdieh, M. Bozorgomid, A. Ghasemi, M.R. Rahmani Taji Boyuk,
M.R. Hamblin, Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances, ACS Applied Materials & Interfaces 8(33) (2016) 21107- 21133.
[85] S. Uchiyama, C. Gota, T. Tsuji, N. Inada, Intracellular temperature measurements with fluorescent polymeric thermometers, Chemical Communications 53(80) (2017) 10976-10992.
[86] G. Pasparakis, C. Tsitsilianis, LCST polymers: thermoresponsive nanostructured assemblies towards bioapplications, Polymer 211 (2020) 123146.
[87] S. Lanzalaco, E. Armelin, Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications, Gels 3(4) (2017) 36.
[88] T. Manouras, E. Koufakis, S.H. Anastasiadis, M. Vamvakaki, A facile route towards PDMAEMA homopolymer amphiphiles, Soft Matter 13(20) (2017) 3777-3782.
[89] W. Agut, A. Brûlet, C. Schatz, D. Taton, S. Lecommandoux, pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly[2- (dimethylamino)ethyl methacrylate]-b-poly(glutamic acid) double hydrophilic block copolymers, Langmuir 26(13) (2010) 10546-10554.
[90] S. Chatterjee, P.C.-l. Hui, E. Wat, C.-w. Kan, P.-C. Leung, W. Wang, Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy, Carbohydrate Polymers 236 (2020) 116074.
[91] G.P. Hoyos-Ceballos, V. Sánchez-Giraldo, M. Mendivil-Perez, M. Jimenez-Del-Rio, L. Sierra-Garcia, C. Vélez-Pardo, B.L. López-Osorio, Design of epigallocatechin gallate loaded PLGA/PF127 nanoparticles and their effect upon an oxidative stress model, Journal of Drug Delivery Science and Technology 48 (2018) 152-160.
[92] N.A. Cortez-Lemus, A. Licea-Claverie, Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular, Progress in Polymer Science 53 (2016) 1-51.
[93] A. Saraiva, O. Persson, A. Fredenslund, An experimental investigation of cloud-point curves for the poly(ethylene glycol)/water system at varying molecular weight distributions, Fluid Phase Equilibria 91(2) (1993) 291-311.
[94] M. Rackaitis, K. Strawhecker, E. Manias, Water-soluble polymers with tunable temperature sensitivity: solution behavior, Journal of Polymer Science Part B: Polymer Physics 40(19) (2002) 2339-2342.
[95] H.G. Schild, D.A. Tirrell, Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions, The Journal of Physical Chemistry 94(10) (1990) 4352-4356.
[96] F. Han, A.H. Soeriyadi, J.J. Gooding, Reversible Thermoresponsive plasmonic core- satellite nanostructures that exhibit both expansion and contraction (UCST and LCST), Macromolecular Rapid Communications 39(23) (2018) 1800451.
[97] Y. Zhu, R. Batchelor, A.B. Lowe, P.J. Roth, Design of thermoresponsive polymers with aqueous LCST, UCST, or both: modification of a reactive poly(2-vinyl-4,4-dimethylazlactone) scaffold, Macromolecules 49(2) (2016) 672-680.
[98] W. Sun, Z. An, P. Wu, UCST or LCST? composition-dependent thermoresponsive behavior of poly(N-acryloylglycinamide-co-diacetone acrylamide), Macromolecules 50(5) (2017) 2175-2182.
[99] X. Fu, C. Xing, J. Sun, Tunable LCST/UCST-type polypeptoids and their structure– property relationship, Biomacromolecules 21(12) (2020) 4980-4988.
[100] D. Wang, J. Yin, Z. Zhu, Z. Ge, H. Liu, S.P. Armes, S. Liu, Micelle formation and inversion kinetics of a schizophrenic diblock copolymer, Macromolecules 39(21) (2006) 7378- 7385.
[101] K. Yamanari, S. Yamamoto, R. Ito, Y. Kushi, A. Fuyuhiro, N. Kubota, T. Fukuo, R. Arakawa, Cyclic hexamer with a cubic cavity: crystal structure of [{Rh(6-Purinethione Ribosido)(Cp*)}6](CF3SO3)6, Angewandte Chemie International Edition 40(12) (2001) 2268-2271.
[102] F.F. Taktak, V. Bütün, Synthesis and physical gels of pH- and thermo-responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies, Polymer 51(16) (2010) 3618-3626.
[103] Q. Bian, Y. Xiao, C. Zhou, M. Lang, Synthesis, self-assembly, and pH-responsive behavior of (photo-crosslinked) star amphiphilic triblock copolymer, Journal of Colloid and Interface Science 392 (2013) 141-150.
[104] C. Tuncer, V. Bütün, Highly cross-linked soluble star copolymers with well controlled molecular weights, European Polymer Journal 67 (2015) 292-303.
[105] X. Shi, Y. Zhao, H. Gao, L. Zhang, F. Zhu, Q. Wu, Synthesis of hyperbranched polyethylene amphiphiles by chain walking polymerization in tandem with RAFT polymerization and supramolecular self-assembly vesicles, Macromolecular Rapid Communications 33(5) (2012) 374-379.
[106] V. Bütün, I. Bannister, N.C. Billingham, D.C. Sherrington, S.P. Armes, Synthesis and characterization of branched water-soluble homopolymers and diblock copolymers using group transfer polymerization, Macromolecules 38(12) (2005) 4977-4982.
[107] P.-S. Lai, P.-J. Lou, C.-L. Peng, C.-L. Pai, W.-N. Yen, M.-Y. Huang, T.-H. Young, M.-J. Shieh, Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy, Journal of Controlled Release 122(1) (2007) 39-46.
[108] Y. Yan, D. Wei, J. Li, J. Zheng, G. Shi, W. Luo, Y. Pan, J. Wang, L. Zhang, X. He, D. Liu, A poly(l-lysine)-based hydrophilic star block co-polymer as a protein nanocarrier with facile encapsulation and pH-responsive release, Acta Biomaterialia 8(6) (2012) 2113-2120.
[109] H. Lei, M. Wang, Z. Tang, Y. Luan, W. Liu, B. Song, H. Chen, Control of lysozyme adsorption by pH on surfaces modified with polyampholyte brushes, Langmuir 30(2) (2014) 501-508.
[110] C. Chen, M. Liu, C. Gao, S. Lü, J. Chen, X. Yu, E. Ding, C. Yu, J. Guo, G. Cui, A convenient way to synthesize comb-shaped chitosan-graft-poly (N-isopropylacrylamide) copolymer, Carbohydrate Polymers 92(1) (2013) 621-628.
[111] T. Zhou, C. Xiao, J. Fan, S. Chen, J. Shen, W. Wu, S. Zhou, A nanogel of on-site tunable pH-response for efficient anticancer drug delivery, Acta Biomaterialia 9(1) (2013) 4546-4557.
[112] L. Liu, P. Du, X. Zhao, J. Zeng, P. Liu, Independent temperature and pH dual-stimuli responsive yolk/shell polymer microspheres for controlled release: structural effect, European Polymer Journal 69 (2015) 540-551.
[113] J. Moselhy, T. Vira, F.-F. Liu, X.Y. Wu, Characterization of complexation of poly (N- isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate) thermoresponsive cationic nanogels with salmon sperm DNA, International Journal of Nanomedicine 4 (2009) 153-164.
[114] H. Hu, X.-D. Fan, Z.-L. Cao, W.-X. Cheng, Y.-Y. Liu, Synthesis and characterization of the environmental-sensitive hyperbranched polymers as novel carriers for controlled drug release, Journal of Applied Polymer Science 101(1) (2006) 311-316.
[115] P. Zhou, Y.-Y. Liu, L.-Y. Niu, J. Zhu, Self-assemblies of the six-armed star triblock ABC copolymer: pH-tunable morphologies and drug release, Polymer Chemistry 6(15) (2015) 2934- 2944.
[116] S.B. Lee, A.J. Russell, K. Matyjaszewski, ATRP synthesis of amphiphilic random, gradient, and block copolymers of 2-(dimethylamino)ethyl methacrylate and n-butyl methacrylate in aqueous media, Biomacromolecules 4(5) (2003) 1386-1393.
[117] D. Roy, J.N. Cambre, B.S. Sumerlin, Triply-responsive boronic acidblock copolymers: solution self-assembly induced by changes in temperature, pH, or sugar concentration, Chemical Communications (16) (2009) 2106-2108.
[118] Y. Wang, C.-Y. Hong, C.-Y. Pan, Spiropyran-based hyperbranched star copolymer: synthesis, phototropy, FRET, and bioapplication, Biomacromolecules 13(8) (2012) 2585-2593.
[119] S. Ghosh Roy, P. De, Facile RAFT synthesis of side-chain amino acids containing pH- responsive hyperbranched and star architectures, Polymer Chemistry 5(21) (2014) 6365-6378.
[120] V. Bütün, S.P. Armes, N.C. Billingham, Synthesis and aqueous solution properties of near- monodisperse tertiary amine methacrylate homopolymers and diblock copolymers, Polymer 42(14) (2001) 5993-6008.
[121] N. Stavrouli, A.I. Triftaridou, C.S. Patrickios, C. Tsitsilianis, Multi-compartment unimolecular micelles from (ABC)n multi-arm star triblock terpolymers, Macromolecular Rapid Communications 28(5) (2007) 560-566.
[122] D. Dupin, S. Fujii, S.P. Armes, P. Reeve, S.M. Baxter, Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization, Langmuir 22(7) (2006) 3381-3387.
[123] B.R. Saunders, H.M. Crowther, B. Vincent, Poly[(methyl methacrylate)-co-(methacrylic acid)] microgel particles:  swelling control using pH, cononsolvency, and osmotic deswelling, Macromolecules 30(3) (1997) 482-487.
[124] N. Cao, X. Xie, Y. Zhang, Y. Zhao, L. Cao, L. Sun, Dendritic porous SnO2/SiO2@polymer nanospheres for pH-controlled styptic drug release, Journal of Industrial and Engineering Chemistry 34 (2016) 9-13.
[125] R. Zhang, M. Tang, A. Bowyer, R. Eisenthal, J. Hubble, A novel pH- and ionic-strength- sensitive carboxy methyl dextran hydrogel, Biomaterials 26(22) (2005) 4677-4683.
[126] R. Guo, L. Zhang, Z. Jiang, Y. Cao, Y. Ding, X. Jiang, Synthesis of alginic acid−poly[2- (diethylamino)ethyl methacrylate] monodispersed nanoparticles by a polymer−monomer pair reaction system, Biomacromolecules 8(3) (2007) 843-850.
[127] W. Dong, Y. Zhou, D. Yan, H. Li, Y. Liu, pH-responsive self-assembly of carboxyl- terminated hyperbranched polymers, Physical Chemistry Chemical Physics 9(10) (2007) 1255- 1262.

[128] L.I. Gabaston, S.A. Furlong, R.A. Jackson, S.P. Armes, Direct synthesis of novel acidic and zwitterionic block copolymers via TEMPO-mediated living free-radical polymerization, Polymer 40(16) (1999) 4505-4514.
[129] T. Miyata, K. Nakamae, A.S. Hoffman, Y. Kanzaki, Stimuli-sensitivities of hydrogels containing phosphate groups, Macromolecular Chemistry and Physics 195(4) (1994) 1111- 1120.
[130] B. Bingöl, C. Strandberg, A. Szabo, G. Wegner, Copolymers and hydrogels based on vinylphosphonic acid, Macromolecules 41(8) (2008) 2785-2790.
[131] Z. Song, K. Wang, C. Gao, S. Wang, W. Zhang, A New Thermo-, pH-, and CO2- responsive homopolymer of poly[N-[2-(diethylamino)ethyl]acrylamide]: is the diethylamino group underestimated?, Macromolecules 49(1) (2016) 162-171.
[132] X. Han, X. Zhang, H. Zhu, Q. Yin, H. Liu, Y. Hu, Effect of composition of PDMAEMA- b-PAA block copolymers on their pH- and temperature-responsive behaviors, Langmuir 29(4) (2013) 1024-1034.
[133] V.T. Pinkrah, M.J. Snowden, J.C. Mitchell, J. Seidel, B.Z. Chowdhry, G.R. Fern, Physicochemical properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels, Langmuir 19(3) (2003) 585-590.
[134] B. Wang, H.-J. Liu, T.-T. Jiang, Q.-H. Li, Y. Chen, Thermo-, and pH dual-responsive poly(N-vinylimidazole): preparation, characterization and its switchable catalytic activity, Polymer 55(23) (2014) 6036-6043.
[135] N. González, C. Elvira, J.S. Román, Novel dual-stimuli-responsive polymers derived from ethylpyrrolidine, Macromolecules 38(22) (2005) 9298-9303.
[136] N. Malik, R. Wiwattanapatapee, R. Klopsch, K. Lorenz, H. Frey, J.W. Weener, E.W. Meijer, W. Paulus, R. Duncan, Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo, Journal of Controlled Release 65(1) (2000) 133-148.
[137] J. Ruchmann, S.C. Sebai, C. Tribet, Photoresponse of complexes between surfactants and azobenzene-modified polymers accounting for the random distribution of hydrophobic side groups, Macromolecules 44(3) (2011) 604-611.
[138] Y. Wang, S. Lin, M. Zang, Y. Xing, X. He, J. Lin, T. Chen, Self-assembly and photo- responsive behavior of novel ABC2-type block copolymers containing azobenzene moieties, Soft Matter 8(11) (2012) 3131-3138.
[139] D. Han, X. Tong, Y. Zhao, Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation, Langmuir 28(5) (2012) 2327-2331.
[140] K.H. Fries, J.D. Driskell, S. Samanta, J. Locklin, Spectroscopic analysis of metal ion binding in spiropyran containing copolymer thin films, Analytical Chemistry 82(8) (2010) 3306-3314.
[141] W. Zhang, K. Yoshida, M. Fujiki, X. Zhu, Unpolarized-light-driven amplified chiroptical modulation between chiral aggregation and achiral disaggregation of an azobenzene-alt- fluorene copolymer in limonene, Macromolecules 44(13) (2011) 5105-5111.
[142] J. Jiang, X. Tong, Y. Zhao, A new design for light-breakable polymer micelles, Journal of the American Chemical Society 127(23) (2005) 8290-8291.
[143] J. Jiang, X. Tong, D. Morris, Y. Zhao, Toward photocontrolled release using light- dissociable block copolymer micelles, Macromolecules 39(13) (2006) 4633-4640.
[144] J. Babin, M. Pelletier, M. Lepage, J.-F. Allard, D. Morris, Y. Zhao, A new two-photon- sensitive block copolymer nanocarrier, Angewandte Chemie International Edition 48(18) (2009) 3329-3332.
[145] C.-J. Chen, G.-Y. Liu, Y.-T. Shi, C.-S. Zhu, S.-P. Pang, X.-S. Liu, J. Ji, Biocompatible micelles based on comb-like PEG derivates: formation, characterization, and photo- responsiveness, Macromolecular Rapid Communications 32(14) (2011) 1077-1081.
[146] G. Liu, X. Wang, J. Hu, G. Zhang, S. Liu, Self-immolative polymersomes for high- efficiency triggered release and programmed enzymatic reactions, Journal of the American Chemical Society 136(20) (2014) 7492-7497.
[147] O. Bertrand, J.-F. Gohy, Photo-responsive polymers: synthesis and applications, Polymer Chemistry 8(1) (2017) 52-73.
[148] T. Manouras, M. Vamvakaki, Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers, Polymer Chemistry 8(1) (2017) 74-96.
[149] L.J. Romasanta, M.A. Lopez-Manchado, R. Verdejo, Increasing the performance of dielectric elastomer actuators: a review from the materials perspective, Progress in Polymer Science 51 (2015) 188-211.
[150] H. Liu, L. Zhang, D. Yang, N. Ning, Y. Yu, L. Yao, B. Yan, M. Tian, A new kind of electro-active polymer composite composed of silicone elastomer and polyethylene glycol, Journal of Physics D: Applied Physics 45(48) (2012) 485303.
[151] J. Thévenot, H. Oliveira, O. Sandre, S. Lecommandoux, Magnetic responsive polymer composite materials, Chemical Society Reviews 42(17) (2013) 7099-7116.
[152] M. Zrínyi, L. Barsi, A. Büki, Deformation of ferrogels induced by nonuniform magnetic fields, The Journal of Chemical Physics 104(21) (1996) 8750-8756.
[153] G.V. Stepanov, D.Y. Borin, Y.L. Raikher, P.V. Melenev, N.S. Perov, Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers, Journal of Physics: Condensed Matter 20(20) (2008) 204121.
[154] C. Bellan, G. Bossis, Field dependence of viscoelastic properties of MR elastomers, International Journal of Modern Physics B 16(17n18) (2002) 2447-2453.
[155] J. Cheng, B.A. Teply, S.Y. Jeong, C.H. Yim, D. Ho, I. Sherifi, S. Jon, O.C. Farokhzad, A. Khademhosseini, R.S. Langer, Magnetically responsive polymeric microparticles for oral delivery of protein drugs, Pharmaceutical Research 23(3) (2006) 557-564.
[156] F. Xu, J.H. Geiger, G.L. Baker, M.L. Bruening, Polymer brush-modified magnetic nanoparticles for his-tagged protein purification, Langmuir 27(6) (2011) 3106-3112.
[157] S. Louguet, B. Rousseau, R. Epherre, N. Guidolin, G. Goglio, S. Mornet, E. Duguet, S. Lecommandoux, C. Schatz, Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release, Polymer Chemistry 3(6) (2012) 1408-1417.
[158] N.S. Satarkar, J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release, Journal of Controlled Release 130(3) (2008) 246-251.
[159] M. Heskins, J.E. Guillet, Solution properties of poly(N-isopropylacrylamide), Journal of Macromolecular Science: Part A - Chemistry 2(8) (1968) 1441-1455.
[160] P.J. Flory, Thermodynamics of high polymer solutions, The Journal of Chemical Physics 10(1) (1942) 51-61.
[161] M.L. Huggins, Thermodynamic properties of solutions of long-chain compounds, Annals of the New York Academy of Sciences 43(1) (1942) 1-32.
[162] R. Pelton, Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic, Journal of Colloid and Interface Science 348(2) (2010) 673-674.
[163] J. Wang, D. Gan, L.A. Lyon, M.A. El-Sayed, Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions, Journal of the American Chemical Society 123(45) (2001) 11284-11289.
[164] S. Furyk, Y. Zhang, D. Ortiz-Acosta, P.S. Cremer, D.E. Bergbreiter, Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N- isopropylacrylamide), Journal of Polymer Science Part A: Polymer Chemistry 44(4) (2006) 1492-1501.
[165] K. Otake, H. Inomata, M. Konno, S. Saito, Thermal analysis of the volume phase transition with N-isopropylacrylamide gels, Macromolecules 23 (1990) 283.
[166] J.E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T. Okano, Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers, Journal of Controlled Release 53(1) (1998) 119-130.
[167] X. Qiu, T. Koga, F. Tanaka, F.M. Winnik, New insights into the effects of molecular weight and end group on the temperature-induced phase transition of poly(N- isopropylacrylamide) in water, Science China Chemistry 56(1) (2013) 56-64.
[168] M.L. Ohnsorg, J.M. Ting, S.D. Jones, S. Jung, F.S. Bates, T.M. Reineke, Tuning PNIPAm self-assembly and thermoresponse: roles of hydrophobic end-groups and hydrophilic comonomer, Polymer Chemistry 10(25) (2019) 3469-3479.
[169] R. Singh, S.A. Deshmukh, G. Kamath, S.K.R.S. Sankaranarayanan, G. Balasubramanian, Controlling the aqueous solubility of PNIPAM with hydrophobic molecular units, Computational Materials Science 126 (2017) 191-203.
[170] S. Chaudhuri, C.-M. Wu, Switchable wettability of poly(NIPAAm-co-HEMA-co-NMA) coated PET fabric for moisture management, Polymers 12(1) (2020) 100.
[171] Y. Zhang, S. Furyk, D.E. Bergbreiter, P.S. Cremer, Specific ion effects on the water solubility of macromolecules:  PNIPAM and the Hofmeister series, Journal of the American Chemical Society 127(41) (2005) 14505-14510.
[172] C. Scherzinger, A. Schwarz, A. Bardow, K. Leonhard, W. Richtering, Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): microgels versus linear chains and macrogels, Current Opinion in Colloid & Interface Science 19(2) (2014) 84-94.
[173] X. Xu, Y. Liu, W. Fu, M. Yao, Z. Ding, J. Xuan, D. Li, S. Wang, Y. Xia, M. Cao, Poly(N- isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications, Polymers 12(3) (2020) 580.
[174] M. Cao, Y. Wang, X. Hu, H. Gong, R. Li, H. Cox, J. Zhang, T.A. Waigh, H. Xu, J.R. Lu, Reversible thermoresponsive peptide–PNIPAM hydrogels for controlled drug delivery, Biomacromolecules 20(9) (2019) 3601-3610.
[175] W. Wei, X. Hu, X. Qi, H. Yu, Y. Liu, J. Li, J. Zhang, W. Dong, A novel thermo- responsive hydrogel based on salecan and poly(N-isopropylacrylamide): synthesis and characterization, Colloids and Surfaces B: Biointerfaces 125 (2015) 1-11.
[176] S. Feng, S. Wang, Y. Lv, L. He, Q. Li, T. Zhang, Dual pH- and thermal-responsive nanocomposite hydrogels for controllable delivery of hydrophobic drug baicalein, Polymer International 68(3) (2019) 494-502.
[177] Y. Pan, H. Bao, N.G. Sahoo, T. Wu, L. Li, Water-soluble poly(N-isopropylacrylamide)– graphene sheets synthesized via click chemistry for drug delivery, Advanced Functional Materials 21(14) (2011) 2754-2763.
[178] V. Brunella, S.A. Jadhav, I. Miletto, G. Berlier, E. Ugazio, S. Sapino, D. Scalarone, Hybrid drug carriers with temperature-controlled on–off release: A simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles, Reactive and Functional Polymers 98 (2016) 31-37.
[179] Y. Xia, H. Wu, D. Tang, S. Gao, B. Chen, Z. Zeng, S. Wang, M. Cao, D. Li, Graphene oxide nanosheet-composited poly(N-isopropylacrylamide) hydrogel for cell sheet recovery, Macromolecular Research 27(7) (2019) 679-685.
[180] A. Mellati, S. Dai, J. Bi, B. Jin, H. Zhang, A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells, RSC Advances 4(109) (2014) 63951-63961.
[181] I.K. Kwon, T. Matsuda, Photo-iniferter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization, Biomaterials 27(7) (2006) 986-995.
[182] L. Cai, R.E. Dewi, S.C. Heilshorn, Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells, Advanced Functional Materials 25(9) (2015) 1344-1351.
[183] L. Cai, R.E. Dewi, A.B. Goldstone, J.E. Cohen, A.N. Steele, Y.J. Woo, S.C. Heilshorn, Regulating stem cell secretome using injectable hydrogels with in situ network formation, Advanced Healthcare Materials 5(21) (2016) 2758-2764.
[184] Z. Atoufi, S.K. Kamrava, S.M. Davachi, M. Hassanabadi, S. Saeedi Garakani, R. Alizadeh, M. Farhadi, S. Tavakol, Z. Bagher, G. Hashemi Motlagh, Injectable PNIPAM/hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: synthesis, characterization, drug release and cell culture study, International Journal of Biological Macromolecules 139 (2019) 1168-1181.
[185] B. Liu, J. Hu, The application of temperature-sensitive hydrogels to textiles, a review of chinese and japanese investigations 13(6) (2005) 45-49.
[186] S.L. Gras, T. Mahmud, G. Rosengarten, A. Mitchell, K. Kalantar-zadeh, Intelligent control of surface hydrophobicity, ChemPhysChem 8(14) (2007) 2036-2050.
[187] B. Liu, J. Hu, Q. Meng, Nonwoven supported temperature-sensitive poly(N- isopropylacrylamide)/polyurethane copolymer hydrogel with antibacterial activity, Journal of Biomedical Materials Research Part B: Applied Biomaterials 89B(1) (2009) 1-8.
[188] S.Y. Kim, T. Kanamori, T. Shinbo, Preparation of thermal-responsive poly(propylene) membranes grafted with n-isopropylacrylamide by plasma-induced polymerization and their water permeation, Journal of Applied Polymer Science 84(6) (2002) 1168-1177.
[189] W. Wang, W. Yu, Preparation and characterization of CS-g-PNIPAAm microgels and application in a water vapour-permeable fabric, Carbohydrate Polymers 127 (2015) 11-18.
[190] Z.-S. Huang, J.-W. Shiu, T.-F. Way, S.-P. Rwei, A thermo-responsive random copolymer of poly(NIPAm-co-FMA) for smart textile applications, Polymer 184 (2019) 121917.
[191] K.-S. Chen, J.-C. Tsai, C.-W. Chou, M.-R. Yang, J.-M. Yang, Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface, Materials Science and Engineering: C 20(1) (2002) 203-208.
[192] F.K. Tavaria, J.C. Soares, I.L. Reis, M.H. Paulo, F.X. Malcata, M.E. Pintado, Chitosan: antimicrobial action upon staphylococci after impregnation onto cotton fabric, Journal of Applied Microbiology 112(5) (2012) 1034-1041.
[193] A. Gugliuzza, E. Drioli, A review on membrane engineering for innovation in wearable fabrics and protective textiles, Journal of Membrane Science 446 (2013) 350-375.
[194] Y. Ye, J. Huang, X. Wang, Fabrication of a self-cleaning surface via the thermosensitive copolymer brush of P(NIPAAm-PEGMA), ACS Applied Materials & Interfaces 7(40) (2015) 22128-22136.
[195] R. Fei, A.K. Means, A.A. Abraham, A.K. Locke, G.L. Coté, M.A. Grunlan, self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors, Macromolecular Materials and Engineering 301(8) (2016) 935-943.
[196] F. Wang, H. Cong, J. Xing, S. Wang, Y. Shen, B. Yu, Novel antifouling polymer with self-cleaning efficiency as surface coating for protein analysis by electrophoresis, Talanta 221 (2021) 121493.
[197] H. Zhu, L. Wang, Smart window based on Cu7S4/hydrogel composites with fast photothermal response, Solar Energy Materials and Solar Cells 202 (2019) 110109.
[198] C.-H. Zhu, Y. Lu, J.-F. Chen, S.-H. Yu, Photothermal poly(N- isopropylacrylamide)/Fe3O4 nanocomposite hydrogel as a movable position heating source under remote control, Small 10(14) (2014) 2796-2800.
[199] P. Huo, J. Li, Z. Ye, H. Wang, X. Liu, X. Li, Y. Yan, Fabricated temperature sensitive photocatalyst of PNIPAM@ZnO/C for controllable photocatalytic activity, Chinese Chemical Letters 28(12) (2017) 2259-2262.
[200] P. Huo, Z. Ye, H. Wang, Q. Guan, Y. Yan, Thermo-responsive PNIPAM@AgBr/CSs composite photocatalysts for switchable degradation of tetracycline antibiotics, Journal of Alloys and Compounds 696 (2017) 701-710.
[201] H. Jia, R. Roa, S. Angioletti-Uberti, K. Henzler, A. Ott, X. Lin, J. Möser, Z. Kochovski,

A. Schnegg, J. Dzubiella, M. Ballauff, Y. Lu, Thermosensitive Cu2O–PNIPAM core–shell nanoreactors with tunable photocatalytic activity, Journal of Materials Chemistry A 4(24) (2016) 9677-9684.
[202] Y. Duan, J. Ma, J. Liu, L. Qiang, J. Xue, Facile synthesis of thermo-responsive TiO2/PNIPAM composite with switchable photocatalytic performance, Fibers and Polymers 21(4) (2020) 717-723.
[203] Z. Yu, D. Tang, H. Lv, Q. Feng, Q. Zhang, E. Jiang, Q. Wang, Fabrication of thermo responsive fibrous ZnO/PNIPAM nanocomposites with switchable photocatalytic activity, Colloids and Surfaces A: Physicochemical and Engineering Aspects 471 (2015) 117-123.
[204] K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam, M. Wang, A. Ren, K.L. Choy, I.P. Parkin,

Z. Guo, J. Wu, Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr3 Quantum Dots, Advanced Materials 32(22) (2020) 2000004.
[205] D. Franke, G. Gerlach, Swelling studies of porous and nonporous semi-IPN hydrogels for sensor and actuator applications, Micromachines 11(4) (2020) 425.
[206] O. Wichterle, D. LÍM, Hydrophilic gels for biological use, Nature 185(4706) (1960) 117- 118.
[207] J.M. Seidel, S.M. Malmonge, Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques, Materials Research 3 (2000) 79-83.
[208] D.J.T. Hill, N.G. Moss, P.J. Pomery, A.K. Whittaker, Copolymer hydrogels of 2- hydroxyethyl methacrylate with n-butyl methacrylate and cyclohexyl methacrylate: synthesis, characterization and uptake of water, Polymer 41(4) (2000) 1287-1296.
[209] C.B. Lombello, S.M. Malmonge, M.L. Wada, PolyHEMA and polyHEMA-poly(MMA- co-AA) as substrates for culturing Vero cells, Journal of Materials Science : Materials in Medicine 11(9) (2000) 541-6.
[210] F.F. Wolf, N. Friedemann, H. Frey, Poly(lactide)-block-poly(HEMA) block copolymers: an orthogonal one-pot combination of ROP and ATRP, using a bifunctional initiator, Macromolecules 42(15) (2009) 5622-5628.
[211] M.R. Islam, L.G. Bach, J.M. Park, S.-S. Hong, K.T. Lim, Synthesis and characterization of poly(HEMA-co-MMA)-g-POSS nanocomposites by combination of reversible addition fragmentation chain transfer polymerization and click chemistry, Journal of Applied Polymer Science 127(3) (2013) 1569-1577.
[212] G.A. Hutcheon, C. Messiou, R.M. Wyre, M.C. Davies, S. Downes, Water absorption and surface properties of novel poly(ethylmethacrylate) polymer systems for use in bone and cartilage repair, Biomaterials 22(7) (2001) 667-676.
[213] O.G. Marambio, G.D.C. Pizarro, M. Jeria, M. Huerta, Preparation, characterization and application of poly(hydroxyethyl methacrylate -co- acrylamide) as non ionic water-soluble polychelatogen, Journal of the Chilean Chemical Society 48 (2003) 41-48.
[214] S. Rouif, Radiation cross-linked polymers: recent developments and new applications, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 236(1) (2005) 68-72.
[215] B.-Y. Chen, C.-C. Kuo, C.-J. Cho, F.-C. Liang, R.-J. Jeng, Novel fluorescent chemosensory filter membranes composed of electrospun nanofibers with ultra-selective and reversible pH and Hg2+ sensing characteristics, Dyes and Pigments 143 (2017) 129-142.
[216] W.-J. Chuang, W.-Y. Chiu, Thermo-responsive nanofibers prepared from poly(N- isopropylacrylamide-co-N-methylol acrylamide), Polymer 53(14) (2012) 2829-2838.
[217] N.R. Brown, C.E. Frazier, Cross-linking poly[(vinyl acetate)-co-N-methylolacrylamide] latex adhesive performance part I: N-methylolacrylamide (NMA) distribution, International Journal of Adhesion and Adhesives 27(7) (2007) 547-553.
[218] W. Xiong, L. Zhou, S. Liu, Development of gold-doped carbon foams as a sensitive electrochemical sensor for simultaneous determination of Pb (II) and Cu (II), Chemical Engineering Journal 284 (2016) 650-656.
[219] G. Liu, Y. Zhang, M. Qi, F. Chen, Covalent anchoring of multifunctionized gold nanoparticles on electrodes towards an electrochemical sensor for the detection of cadmium ions, Analytical Methods 7(13) (2015) 5619-5626.
[220] Mu, Shi, J.C. Chang, S.-T. Lee, Silicon nanowires-based fluorescence sensor for Cu(II), Nano Letters 8(1) (2008) 104-109.
[221] H. Huang, T. Chen, X. Liu, H. Ma, Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials, Analytica Chimica Acta 852 (2014) 45-54.
[222] X. Xuan, J.Y. Park, A miniaturized and flexible cadmium and lead ion detection sensor based on micro-patterned reduced graphene oxide/carbon nanotube/bismuth composite electrodes, Sensors and Actuators B: Chemical 255 (2018) 1220-1227.
[223] Y. Zuo, J. Xu, X. Zhu, X. Duan, L. Lu, Y. Yu, Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review, Microchimica Acta 186(3) (2019) 171.
[224] J.-L. Chen, C.-Q. Zhu, Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination, Analytica Chimica Acta 546(2) (2005) 147-153.
[225] Y. Chen, Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes, Analytical chemistry 74(19) (2002) 5132-5138.
[226] M. Algarra, B.B. Campos, B. Alonso, M.S. Miranda, Á.M. Martínez, C.M. Casado,

J.C.G. Esteves da Silva, Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing, Talanta 88 (2012) 403-407.
[227] K. Konishi, T. Hiratani, Turn-on and selective luminescence sensing of copper ions by a water-soluble Cd10S16 molecular cluster, Angewandte Chemie International Edition 45(31) (2006) 5191-5194.
[228] G.-X. Liang, H.-Y. Liu, J.-R. Zhang, J.-J. Zhu, Ultrasensitive Cu2+ sensing by near-

infrared-emitting CdSeTe alloyed quantum dots, Talanta 80(5) (2010) 2172-2176.

[229] J. Ke, X. Li, Y. Shi, Q. Zhao, X. Jiang, A facile and highly sensitive probe for Hg(II) based on metal-induced aggregation of ZnSe/ZnS quantum dots, Nanoscale 4(16) (2012) 4996- 5001.
[230] Z. Fang, K.-Y. Pu, B. Liu, Asymmetric fluorescence quenching of dual-emissive porphyrin-containing conjugated polyelectrolytes for naked-eye mercury ion detection, Macromolecules 41(22) (2008) 8380-8387.
[231] Q. Meng, X. Zhang, C. He, G. He, P. Zhou, C. Duan, Multifunctional mesoporous silica material used for detection and adsorption of Cu2+ in aqueous solution and biological applications in vitro and in vivo, Advanced Functional Materials 20(12) (2010) 1903-1909.
[232] K. Sarkar, K. Dhara, M. Nandi, P. Roy, A. Bhaumik, P. Banerjee, Selective zinc(II)-ion fluorescence sensing by a functionalized mesoporous material covalently grafted with a fluorescent chromophore and consequent biological applications, Advanced Functional Materials 19(2) (2009) 223-234.
[233] J. Hou, L.-Y. Wang, D.-H. Li, X. Wu, A rigid conjugated pyridinylthiazole derivative and its nanoparticles for divalent copper fluorescent sensing in aqueous media, Tetrahedron Letters 52(21) (2011) 2710-2714.
[234] J. Chen, Y. Li, W. Zhong, Q. Hou, H. Wang, X. Sun, P. Yi, Novel fluorescent polymeric nanoparticles for highly selective recognition of copper ion and sulfide anion in water, Sensors and Actuators B: Chemical 206 (2015) 230-238.
[235] S.J. Toal, K.A. Jones, D. Magde, W.C. Trogler, Luminescent silole nanoparticles as chemoselective sensors for Cr(VI), Journal of the American Chemical Society 127(33) (2005) 11661-11665.
[236] D.K. Dalavi, D.P. Bhopate, A.S. Bagawan, A.H. Gore, N.K. Desai, A.A. Kamble, P.G. Mahajan, G.B. Kolekar, S.R. Patil, Fluorescence quenching studies of CTAB stabilized perylene nanoparticles for the determination of Cr(VI) from environmental samples: spectroscopic approach, Analytical Methods 6(17) (2014) 6948-6955.
[237] V.K. Bhardwaj, H. Sharma, N. Kaur, N. Singh, Fluorescent organic nanoparticles (FONs) of rhodamine-appended dipodal derivative: highly sensitive fluorescent sensor for the detection of Hg2+ in aqueous media, New Journal of Chemistry 37(12) (2013) 4192-4198.
[238] S. Pawar, M. Akula, S. Labala, V.V.K. Venuganti, A. Bhattacharya, A. Nag, Zinc(II) ion sensing in aqueous micellar solution using modified bipyridine-based "turn-on" fluorescent probes and its application in bioimaging, ChemPlusChem 81(12) (2016) 1339-1348.
[239] Y. Dong, T. Liu, X. Wan, H. Pei, L. Wu, Y. Yao, Facile one-pot synthesis of bipyridine- based dual-channel chemosensor for the highly selective and sensitive detection of aluminum ion, Sensors and Actuators B: Chemical 241 (2017) 1139-1144.
[240] M. Formica, V. Fusi, L. Giorgi, M. Micheloni, New fluorescent chemosensors for metal ions in solution, Coordination Chemistry Reviews 256(1) (2012) 170-192.
[241] B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coordination Chemistry Reviews 205(1) (2000) 3-40.
[242] Z.R. Grabowski, J. Dobkowski, Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure, Pure and Applied Chemistry 55(2) (1983) 245-252.
[243] N.S. Hush, J.R. Reimers, Solvent effects on metal to ligand charge transfer excitations, Coordination Chemistry Reviews 177(1) (1998) 37-60.
[244] L. Yuan, W. Lin, K. Zheng, S. Zhu, FRET-based small-molecule fluorescent probes: rational design and bioimaging applications, Accounts of Chemical Research 46(7) (2013) 1462-1473.
[245] Y. Hong, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications, Chemical Communications (29) (2009) 4332-4353.
[246] D. Ding, K. Li, B. Liu, B.Z. Tang, Bioprobes based on AIE fluorogens, Accounts of Chemical Research 46(11) (2013) 2441-2453.
[247] X. Su, J. Ren, X. Meng, X. Ren, F. Tang, A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides, Analyst 138(5) (2013) 1459-1466.
[248] J. Guo, Q. Zhang, Z. Cai, K. Zhao, Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane, Separation and Purification Technology 161 (2016) 69-79.
[249] J.-Y. Chen, C.-C. Kuo, C.-S. Lai, W.-C. Chen, H.-L. Chen, Manipulation on the morphology and electrical properties of aligned electrospun nanofibers of poly(3- hexylthiophene) for field-effect transistor applications, Macromolecules 44(8) (2011) 2883- 2892.
[250] M.V. Jose, S. Marx, H. Murata, R.R. Koepsel, A.J. Russell, Direct electron transfer in a mediator-free glucose oxidase-based carbon nanotube-coated biosensor, Carbon 50(11) (2012) 4010-4020.
[251] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner,

J.H. Wendorff, Nanostructured fibers via electrospinning, Advanced Materials 13(1) (2001) 70-72.
[252] A.Y. Ahmed, T.A. Kandiel, T. Oekermann, D. Bahnemann, Photocatalytic activities of different well-defined single crystal TiO2 surfaces: anatase versus rutile, The Journal of Physical Chemistry Letters 2(19) (2011) 2461-2465.
[253] G. Mamba, C. Pulgarin, J. Kiwi, M. Bensimon, S. Rtimi, Synchronic coupling of Cu2O(p)/CuO(n) semiconductors leading to Norfloxacin degradation under visible light: Kinetics, mechanism and film surface properties, Journal of Catalysis 353 (2017) 133-140.
[254] S. Rtimi, C. Pulgarin, R. Sanjines, J. Kiwi, Innovative semi-transparent nanocomposite films presenting photo-switchable behavior and leading to a reduction of the risk of infection under sunlight, RSC Advances 3(37) (2013) 16345-16348.
[255] O. Baghriche, S. Rtimi, C. Pulgarin, J. Kiwi, Polystyrene CuO/Cu2O uniform films inducing MB-degradation under sunlight, Catalysis Today 284 (2017) 77-83.
[256] X. Hu, X. Liu, J. Tian, Y. Li, H. Cui, Towards full-spectrum (UV, visible, and near- infrared) photocatalysis: achieving an all-solid-state Z-scheme between Ag2O and TiO2 using reduced graphene oxide as the electron mediator, Catalysis Science & Technology 7(18) (2017) 4193-4205.
[257] K.G. Motora, C.-M. Wu, T.F. Chala, M.-H. Chou, C.-F.J. Kuo, P. Koinkar, Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions, Applied Surface Science 512 (2020) 145618.
[258] T.F. Chala, C.-M. Wu, K.G. Motora, RbxWO3/Ag3VO4 nanocomposites as efficient full- spectrum (UV, visible, and near-infrared) photocatalysis, Journal of the Taiwan Institute of Chemical Engineers 102 (2019) 465-474.
[259] X. Zhu, Z. Liu, J. Fang, S. Wu, W. Xu, Synthesis and characterization of mesoporous Bi/TiO2 nanoparticles with high photocatalytic activity under visible light, Journal of Materials Research 28(10) (2013) 1334-1342.
[260] S. Wang, S. Zhou, Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO2 under UV and visible-light irradiation, Journal of Hazardous Materials 185(1) (2011) 77-85.
[261] B. Czech, W. Buda, Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites, Environmental Research 137 (2015) 176-184.
[262] V. Štengl, D. Popelková, P. Vláčil, TiO2–graphene nanocomposite as high performace photocatalysts, The Journal of Physical Chemistry C 115(51) (2011) 25209-25218.
[263] A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst, Journal of Hazardous Materials 177(1) (2010) 781-791.
[264] N. Leventis, C. Sotiriou-Leventis, G. Zhang, A.-M.M. Rawashdeh, Nanoengineering strong silica aerogels, Nano Letters 2(9) (2002) 957-960.
[265] O. Masson, V. Rieux, R. Guinebretière, A. Dauger, Size and shape characterization of TiO2 aerogel nanocrystals, Nanostructured Materials 7(7) (1996) 725-731.
[266] T.F. Baumann, S.O. Kucheyev, A.E. Gash, J.H. Satcher Jr., Facile synthesis of a crystalline, high-surface-area SnO2 aerogel, Advanced Materials 17(12) (2005) 1546-1548.
[267] D.B. Le, S. Passerini, J. Guo, J. Ressler, B.B. Owens, W.H. Smyrl, High surface area

 V2O5 aerogel intercalation Electrodes, Journal of The Electrochemical Society 143(7) (1996) 2099-2104.
[268] S.A. Al-Muhtaseb, J.A. Ritter, Preparation and properties of resorcinol–formaldehyde organic and carbon gels, Advanced Materials 15(2) (2003) 101-114.
[269] J. Yamashita, T. Ojima, M. Shioya, H. Hatori, Y. Yamada, Organic and carbon aerogels derived from poly(vinyl chloride), Carbon 41(2) (2003) 285-294.
[270] C. Daniel, D. Sannino, G. Guerra, Syndiotactic polystyrene aerogels: adsorption in amorphous pores and absorption in crystalline nanocavities, Chemistry of Materials 20(2) (2008) 577-582.
[271] C.A. García-González, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels— promising biodegradable carriers for drug delivery systems, Carbohydrate Polymers 86(4) (2011) 1425-1438.
[272] E.G. Deze, S.K. Papageorgiou, E.P. Favvas, F.K. Katsaros, Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: effect of porosity in Cu2+ and Cd2+ ion sorption, Chemical Engineering Journal 209 (2012) 537-546.
[273] M. Betz, C.A. García-González, R.P. Subrahmanyam, I. Smirnova, U. Kulozik, Preparation of novel whey protein-based aerogels as drug carriers for life science applications, The Journal of Supercritical Fluids 72 (2012) 111-119.
[274] C. Wan, Y. Jiao, S. Wei, L. Zhang, Y. Wu, J. Li, Functional nanocomposites from sustainable regenerated cellulose aerogels: a review, Chemical Engineering Journal 359 (2019) 459-475.
[275] A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein, M. Zhang, A.A. Zakhidov, R.H. Baughman, Giant-stroke, superelastic carbon nanotube aerogel muscles, Science 323(5921) (2009) 1575.
[276] M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher, T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, Journal of the American Chemical Society 132(40) (2010) 14067-14069.
[277] J. Zhang, Y. Cao, J. Feng, P. Wu, Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels, The Journal of Physical Chemistry C 116(14) (2012) 8063-8068.
[278] R. Gavillon, T. Budtova, Aerocellulose: New highly porous cellulose prepared from cellulose−NaOH aqueous solutions, Biomacromolecules 9(1) (2008) 269-277.
[279] J. Shi, L. Lu, W. Guo, M. Liu, Y. Cao, On preparation, structure and performance of high porosity bulk cellulose aerogel, Plastics, Rubber and Composites 44(1) (2015) 26-32.
[280] J. Cai, S. Kimura, M. Wada, S. Kuga, Nanoporous cellulose as metal nanoparticles support, Biomacromolecules 10(1) (2009) 87-94.
[281] Q. Liao, X. Su, W. Zhu, W. Hua, Z. Qian, L. Liu, J. Yao, Flexible and durable cellulose aerogels for highly effective oil/water separation, RSC Advances 6(68) (2016) 63773-63781.
[282] J. Innerlohinger, H.K. Weber, G. Kraft, Aerocellulose: aerogels and aerogel-like materials made from cellulose, Macromolecular Symposia 244(1) (2006) 126-135.
[283] Å. Östlund, D. Lundberg, L. Nordstierna, K. Holmberg, M. Nydén, Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water, Biomacromolecules 10(9) (2009) 2401-2407.
[284] J. Cao, W. Wei, G. Gou, M. Jiang, Y. Cui, S. Zhang, Y. Wang, Z. Zhou, Cellulose films from the aqueous DMSO/TBAH-system, Cellulose 25(3) (2018) 1975-1986.
[285] N. Pircher, L. Carbajal, C. Schimper, M. Bacher, H. Rennhofer, J.-M. Nedelec, H.C. Lichtenegger, T. Rosenau, F. Liebner, Impact of selected solvent systems on the pore and solid structure of cellulose aerogels, Cellulose (Lond) 23 (2016) 1949-1966.
[286] L.-Y. Long, Y.-X. Weng, Y.-Z. Wang, Cellulose aerogels: synthesis, applications, and prospects, Polymers 10(6) (2018) 623.
[287] X. Zhang, Y. Yu, Z. Jiang, H. Wang, The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel, Journal of Wood Science 61(6) (2015) 595-601.
[288] W. Chen, H. Yu, Q. Li, Y. Liu, J. Li, Ultralight and highly flexible aerogels with long cellulose I nanofibers, Soft Matter 7(21) (2011) 10360-10368.
[289] F. Martoïa, T. Cochereau, P.J.J. Dumont, L. Orgéas, M. Terrien, M.N. Belgacem, Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties, Materials & Design 104 (2016) 376-391.
[290] Q. Zheng, A. Kvit, Z. Cai, Z. Ma, S. Gong, A freestanding cellulose nanofibril–reduced graphene oxide–molybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density, Journal of Materials Chemistry A 5(24) (2017) 12528-12541.
[291] J. Zhang, N. Luo, X. Zhang, L. Xu, J. Wu, J. Yu, J. He, J. Zhang, All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid, ACS Sustainable Chemistry & Engineering 4(8) (2016) 4417-4423.
[292] S. Groult, T. Budtova, Thermal conductivity/structure correlations in thermal super- insulating pectin aerogels, Carbohydrate Polymers 196 (2018) 73-81.
[293] L. Aditya, T.M.I. Mahlia, B. Rismanchi, H.M. Ng, M.H. Hasan, H.S.C. Metselaar, O. Muraza, H.B. Aditiya, A review on insulation materials for energy conservation in buildings, Renewable and Sustainable Energy Reviews 73 (2017) 1352-1365.
[294] D. Illera, J. Mesa, H. Gomez, H. Maury, Cellulose aerogels for thermal insulation in buildings: trends and challenges, Coatings 8(10) (2018).
[295] A.E. Donius, A. Liu, L.A. Berglund, U.G.K. Wegst, Superior mechanical performance of highly porous, anisotropic nanocellulose–montmorillonite aerogels prepared by freeze casting, Journal of the Mechanical Behavior of Biomedical Materials 37 (2014) 88-99.
[296] L. Yang, A. Mukhopadhyay, Y. Jiao, Q. Yong, L. Chen, Y. Xing, J. Hamel, H. Zhu, Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2, Nanoscale 9(32) (2017) 11452-11462.
[297] B. Fan, S. Chen, Q. Yao, Q. Sun, C. Jin, Fabrication of Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation, Materials (Basel) 10(3) (2017) 311.
[298] H. Sehaqui, M.E. Gálvez, V. Becatinni, Y. cheng Ng, A. Steinfeld, T. Zimmermann, P. Tingaut, Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose—polyethylenimine foams, Environmental Science & Technology 49(5) (2015) 3167-
3174.
[299] Y. Wu, Y. Zhang, N. Chen, S. Dai, H. Jiang, S. Wang, Effects of amine loading on the properties of cellulose nanofibrils aerogel and its CO2 capturing performance, Carbohydrate Polymers 194 (2018) 252-259.
[300] S. Zhou, T. You, X. Zhang, F. Xu, Superhydrophobic Cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation, ACS Applied Nano Materials 1(5) (2018) 2095-2103.
[301] F. Sun, W. Liu, Z. Dong, Y. Deng, Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation, Chemical Engineering Journal 330 (2017) 774-782.
[302] Y. Li, L. Zhu, N. Grishkewich, K.C. Tam, J. Yuan, Z. Mao, X. Sui, CO2-responsive cellulose nanofibers aerogels for switchable oil–water separation, ACS Applied Materials & Interfaces 11(9) (2019) 9367-9373.
[303] X. Su, Q. Liao, L. Liu, R. Meng, Z. Qian, H. Gao, J. Yao, Cu2O nanoparticle- functionalized cellulose-based aerogel as high-performance visible-light photocatalyst, Cellulose 24(2) (2017) 1017-1029.
[304] K.Y. Chong, C.H. Chia, S. Zakaria, M.S. Sajab, S.W. Chook, P.S. Khiew, CaCO3- decorated cellulose aerogel for removal of Congo Red from aqueous solution, Cellulose 22(4) (2015) 2683-2691.
[305] J. Jiang, J. Zhu, Q. Zhang, X. Zhan, F. Chen, A shape recovery zwitterionic bacterial cellulose aerogel with superior performances for water remediation, Langmuir 35(37) (2019) 11959-11967.
[306] R.M.Y. Saeed, Z. Bano, J. Sun, F. Wang, N. Ullah, Q. Wang, CuS-functionalized cellulose based aerogel as biocatalyst for removal of organic dye, Journal of Applied Polymer Science 136(15) (2019) 47404.
[307] M. Davis, W.M. Hikal, C. Gümeci, L.J. Hope-Weeks, Aerogel nanocomposites of ZnO– SnO2 as efficient photocatalysts for the degradation of rhodamine B, Catalysis Science & Technology 2(5) (2012) 922-924.
[308] Y.-J. Kim, Y.T. Matsunaga, Thermo-responsive polymers and their application as smart biomaterials, Journal of Materials Chemistry B 5(23) (2017) 4307-4321.
[309] F.D. Jochum, P. Theato, Temperature-and light-responsive smart polymer materials, Chemical Society Reviews 42(17) (2013) 7468-7483.
[310] D. Schmaljohann, Thermo-and pH-responsive polymers in drug delivery, Advanced Drug Delivery Reviews 58(15) (2006) 1655-1670.
[311] H. Sun, J. Chen, X. Han, H. Liu, Multi-responsive hydrogels with UCST-and LCST- induced shrinking and controlled release behaviors of rhodamine B, Materials Science and Engineering: C 82 (2018) 284-290.
[312] Z. Lei, Q. Wang, P. Wu, A multifunctional skin-like sensor based on a 3D printed thermo- responsive hydrogel, Materials Horizons 4(4) (2017) 694-700.
[313] E.S. Gil, S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates, Progress in Polymer Science 29(12) (2004) 1173-1222.
[314] D. Jocić, Polymer-based smart coatings for comfort in clothing, Tekstilec 59(2) (2016).

[315] J.-L. Hu, B.-H. Liu, W.-G. Liu, Temperature/pH dual sensitive N- isopropylacrylamide/polyurethane copolymer hydrogel-grafted fabrics, Textile Research Journal 76(11) (2006) 853-860.
[316] A. Bashari, N. Hemmatinejad, A. Pourjavadi, Surface modification of cotton fabric with dual‐responsive PNIPAAm/chitosan nano hydrogel, Polymers for Advanced Technologies 24(9) (2013) 797-806.
[317] H. Yang, A.C.C. Esteves, H. Zhu, D. Wang, J.H. Xin, In-situ study of the structure and dynamics of thermo-responsive PNIPAAm grafted on a cotton fabric, Polymer 53(16) (2012) 3577-3586.
[318] I. Parkova, A. Vilumsone, Microclimate of smart garment, Material Science (1691-3132) (6) (2011).
[319] Y. Zhong, F. Zhang, M. Wang, C.J. Gardner, G. Kim, Y. Liu, J. Leng, S. Jin, R. Chen, Reversible humidity sensitive clothing for personal thermoregulation, Scientific Reports 7 (2017) 44208.
[320] G. Bartkowiak, A. Dąbrowska, Assessment of the thermoregulation properties of textiles with fibres containing phase change materials on the basis of laboratory experiments, Fibres & Textiles in Eastern Europe (1) (2012) 90.
[321] Y. Shin, D.-I. Yoo, K. Son, Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules, Journal of Applied Polymer Science 96(6) (2005) 2005-2010.
[322] Y.-C. Chiu, Y. Chen, C.-C. Kuo, S.-H. Tung, T. Kakuchi, W.-C. Chen, Synthesis, morphology, and sensory applications of multifunctional rod–coil–coil triblock copolymers and their electrospun nanofibers, ACS Applied Materials & Interfaces 4(7) (2012) 3387-3395.

[323] Y.-C. Chiu, C.-C. Kuo, J.-C. Hsu, W.-C. Chen, Thermoresponsive luminescent electrospun fibers prepared from poly(DMAEMA-co-SA-co-StFl) multifunctional random copolymers, ACS Applied Materials & Interfaces 2(11) (2010) 3340-3347.
[324] E. DoĞAnci, M. Gorur, Synthesis, characterization, and chemosensing application of poly(methyl methacrylate-co-hydroxyethyl methacrylate) with dansyl side group, Journal of the Turkish Chemical Society, Section A: Chemistry 3(3) (2016) 565.
[325] B. Zhang, S. Sun, P. Wu, Synthesis and unusual volume phase transition behavior of poly(N-isopropylacrylamide)–poly(2-hydroxyethyl methacrylate) interpenetrating polymer network microgel, Soft Matter 9(5) (2013) 1678-1684.
[326] X. Zhang, L. Zhou, X. Zhang, H. Dai, Synthesis and solution properties of temperature- sensitive copolymers based on NIPAM, Journal of Applied Polymer Science 116(2) (2010) 1099-1105.
[327] T. Gan, Y. Zhang, Y. Guan, In situ gelation of p(NIPAM-HEMA) microgel dispersion and its applications as injectable 3D cell scaffold, Biomacromolecules 10(6) (2009) 1410-1415.
[328] L.-N. Chen, Y.-C. Chiu, J.-J. Hung, C.-C. Kuo, W.-C. Chen, Multifunctional electrospun nanofibers prepared from poly((N-isopropylacrylamide)-co-(N-hydroxymethylacrylamide)) and their blends with 1,2-diaminoanthraquinone for NO gas detection, Macromolecular Chemistry and Physics 215(3) (2014) 286-294.
[329] S. Gallagher, L. Florea, K.J. Fraser, D. Diamond, Swelling and shrinking properties of thermo-responsive polymeric ionic liquid hydrogels with embedded linear pNIPAAM, International Journal of Molecular Sciences 15(4) (2014) 5337-5349.
[330] A.S. Ranganath, A. Baji, Electrospun janus membrane for efficient and switchable oil– water separation, Macromolecular Materials and Engineering 303(11) (2018) 1800272.
[331] T. Darmanin, F. Guittard, Superhydrophobic and superoleophobic properties in nature, Materials Today 18(5) (2015) 273-285.

[332] P. Nordon, H.G. David, Coupled diffusion of moisture and heat in hygroscopic textile materials, International Journal of Heat and Mass Transfer 10(7) (1967) 853-866.
[333] A.S. Ranganath, V. Anand Ganesh, K. Sopiha, R. Sahay, A. Baji, Investigation of wettability and moisture sorption property of electrospun poly(N-isopropylacrylamide) nanofibers, MRS Advances 1(27) (2016) 1959-1964.
[334] J. Gál, A. Hursthouse, P. Tatner, F. Stewart, R. Welton, Cobalt and secondary poisoning in the terrestrial food chain: data review and research gaps to support risk assessment, Environment International 34(6) (2008) 821-838.
[335] M.A. Deshmukh, M. Gicevicius, A. Ramanaviciene, M.D. Shirsat, R. Viter, A. Ramanavicius, Hybrid electrochemical/electrochromic Cu (II) ion sensor prototype based on PANI/ITO-electrode, Sensors and Actuators B: Chemical 248 (2017) 527-535.
[336] W. Hong, W. Li, X. Hu, B. Zhao, F. Zhang, D. Zhang, Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels, Journal of Materials Chemistry 21(43) (2011) 17193-17201.
[337] B. Liu, W.-L. Yu, J. Pei, S.-Y. Liu, Y.-H. Lai, W. Huang, Design and synthesis of bipyridyl- containing conjugated polymers:  effects of polymer rigidity on metal ion sensing, Macromolecules 34(23) (2001) 7932-7940.
[338] A. Ojida, I. Takashima, T. Kohira, H. Nonaka, I. Hamachi, Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor, Journal of the American Chemical Society 130(36) (2008) 12095-12101.
[339] K.P. Carter, A.M. Young, A.E. Palmer, Fluorescent sensors for measuring metal ions in living systems, Chemical Reviews 114(8) (2014) 4564-4601.

[340] B. Bag, A. Pal, Water induced chromogenic and fluorogenic signal modulation in a bi- fluorophore appended acyclic amino-receptor system, Organic & Biomolecular Chemistry 9(3) (2011) 915-925.
[341] K.M.K. Swamy, S.-K. Ko, S.K. Kwon, H.N. Lee, C. Mao, J.-M. Kim, K.-H. Lee, J. Kim,

I. Shin, J. Yoon, Boronic acid-linked fluorescent and colorimetric probes for copper ions, Chemical Communications (45) (2008) 5915-5917.
[342] L. Zeng, E.W. Miller, A. Pralle, E.Y. Isacoff, C.J. Chang, A selective turn-on fluorescent sensor for imaging copper in living cells, Journal of the American Chemical Society 128(1) (2006) 10-11.
[343] J. You, J. Kim, T. Park, B. Kim, E. Kim, Highly fluorescent conjugated polyelectrolyte nanostructures: Synthesis, self‐assembly, and Al3+ ion sensing, Advanced Functional Materials 22(7) (2012) 1417-1424.
[344] S.W. Thomas, G.D. Joly, T.M. Swager, Chemical sensors based on amplifying fluorescent conjugated polymers, Chemical Reviews 107(4) (2007) 1339-1386.
[345] H.J. Kim, S.J. Lee, S.Y. Park, J.H. Jung, J.S. Kim, Detection of Cu II by a chemodosimeter-functionalized monolayer on mesoporous silica, Advanced Materials 20(17) (2008) 3229-3234.
[346] P. Wu, T. Zhao, S. Wang, X. Hou, Semicondutor quantum dots-based metal ion probes, Nanoscale 6(1) (2014) 43-64.
[347] R. Kato, H. Akamatsu, T. Hattori, Preparation of chitosan derivatives with chromophores for optically sensing inorganic anions and carboxylates, Analytical Letters 49(6) (2016) 744- 752.
[348] S. He, S.T. Iacono, S.M. Budy, A.E. Dennis, D.W. Smith, R.C. Smith, Photoluminescence and ion sensing properties of a bipyridyl chromophore-modified semifluorinated polymer and its metallopolymer derivatives, Journal of Materials Chemistry 18(17) (2008) 1970-1976.
[349] H.H. Mihsen, N.K. Shareef, Synthesis, characterization of mixed- ligand complexes containing 2,2-Bipyridine and 3-aminopropyltriethoxysilane, Journal of Physics: Conference Series 1032 (2018) 012066.
[350] T. Yasuda, T. Yamamoto, Synthesis and characterization of new luminescent 1,10- phenanthroline- and pyridine-containing π-conjugated polymers, their optical response to protic acid, Mn+2, and solvents, Macromolecules 36(20) (2003) 7513-7519.
[351] H. Bulska, Intramolecular cooperative double proton transfer in [2, 2′-bipyridyl]-3, 3′-diol, Chemical Physics Letters 98(4) (1983) 398-402.
[352] O.K. Abou-Zied, Steady-state and time-resolved spectroscopy of 2, 2′-bipyridine-3, 3′- diol in solvents and cyclodextrins: Polarity and nanoconfinement effects on tautomerization, The Journal of Physical Chemistry B 114(2) (2010) 1069-1076.
[353] T.N. Nag, T. Das, S. Mondal, A. Maity, P. Purkayastha, Promoting the “water-wire” mechanism of double proton transfer in [2, 2′-bipyridyl]-3, 3′-diol by porous gold nanoparticles, Physical Chemistry Chemical Physics 17(9) (2015) 6572-6576.
[354] K. Rurack, U. Resch, M. Senoner, S. Dähne, A new fluorescence probe for trace metal ions: cation-dependent spectroscopic properties, Journal of Fluorescence 3(3) (1993) 141-143.
[355] F. Lv, X. Feng, H. Tang, L. Liu, Q. Yang, S. Wang, Development of film sensors based on conjugated polymers for copper (II) ion detection, Advanced Functional Materials 21(5) (2011) 845-850.
[356] L. Basabe-Desmonts, D.N. Reinhoudt, M. Crego-Calama, Design of fluorescent materials for chemical sensing, Chemical Society Reviews 36(6) (2007) 993-1017.
[357] N. Malcik, O. Oktar, M. Ozser, P. Caglar, L. Bushby, A. Vaughan, B. Kuswandi, R. Narayanaswamy, Immobilised reagents for optical heavy metal ions sensing, Sensors and Actuators B: Chemical 53(3) (1998) 211-221.
[358] G.-D. Fu, L.-Q. Xu, F. Yao, G.-L. Li, E.-T. Kang, Smart nanofibers with a photoresponsive surface for controlled release, ACS Applied Materials & Interfaces 1(11) (2009) 2424-2427.
[359] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology 7(3) (1996) 216.
[360] L. Liu, W. Xu, Y. Ding, S. Agarwal, A. Greiner, G. Duan, A review of smart electrospun fibers toward textiles, Composites Communications (2020) 100506.
[361] S. Jiang, Y. Chen, G. Duan, C. Mei, A. Greiner, S. Agarwal, Electrospun nanofiber reinforced composites: a review, Polymer Chemistry 9(20) (2018) 2685-2720.
[362] L. Zhao, G. Duan, G. Zhang, H. Yang, S. He, S. Jiang, Electrospun functional materials toward food packaging applications: a review, Nanomaterials 10(1) (2020) 150.
[363] Y.-Y. Chen, C.-C. Kuo, B.-Y. Chen, P.-C. Chiu, P.-C. Tsai, Multifunctional polyacrylonitrile-ZnO/Ag electrospun nanofiber membranes with various ZnO morphologies for photocatalytic, UV-shielding, and antibacterial applications, Journal of Polymer Science Part B: Polymer Physics 53(4) (2015) 262-269.
[364] A. Babel, D. Li, Y. Xia, S.A. Jenekhe, Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors, Macromolecules 38(11) (2005) 4705-4711.
[365] C. Wu, M. Chou, Acoustic-electric conversion and piezoelectric properties of electrospun polyvinylidene fluoride/silver nanofibrous membranes, Express Polymer Letters 14(2) (2020).
[366] C.-M. Wu, M.-H. Chou, W.-Y. Zeng, Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes, Nanomaterials 8(6) (2018) 420.
[367] S. Naseem, C.-M. Wu, T.-Z. Xu, C.-C. Lai, S.-P. Rwei, Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide, Polymers 10(7) (2018) 746.
[368] S. Naseem, C.-M. Wu, T.F. Chala, Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation, Solar Energy 194 (2019) 391-399.
[369] N. Zhang, R. Qiao, J. Su, J. Yan, Z. Xie, Y. Qiao, X. Wang, J. Zhong, Recent advances of electrospun nanofibrous membranes in the development of chemosensors for heavy metal detection, Small 13(16) (2017) 1604293.
[370] L. Liu, H. Bakhshi, S. Jiang, H. Schmalz, S. Agarwal, Composite polymeric membranes with directionally embedded fibers for controlled dual actuation, Macromolecular Rapid Communications 39(10) (2018) 1800082.
[371] S. Jiang, N. Helfricht, G. Papastavrou, A. Greiner, S. Agarwal, Low‐density self‐ assembled poly (N‐Isopropyl Acrylamide) sponges with ultrahigh and extremely fast water uptake and release, Macromolecular Rapid Communications 39(8) (2018) 1700838.
[372] S. Jiang, J.Y. Cheong, J.S. Nam, I.-D. Kim, S. Agarwal, A. Greiner, High-density fibrous polyimide sponges with superior mechanical and thermal properties, ACS Applied Materials & Interfaces 12(16) (2020) 19006-19014.
[373] B.-Y. Chen, Y.-C. Lung, C.-C. Kuo, F.-C. Liang, T.-L. Tsai, D.-H. Jiang, T. Satoh, R.-J. Jeng, Novel Multifunctional luminescent electrospun fluorescent nanofiber chemosensor- filters and their versatile sensing of pH, temperature, and metal ions, Polymers 10(11) (2018) 1259.
[374] Y.-H. Hsueh, W.-C. Liaw, J.-M. Kuo, C.-S. Deng, C.-H. Wu, Hydrogel film-immobilized Lactobacillus brevis RK03 for γ-aminobutyric acid production, International Journal of Molecular Sciences 18(11) (2017) 2324.
[375] L.G. Bach, X.T. Cao, R. Islam, Y.T. Jeong, J.S. Kim, K.T. Lim, Synthesis and characterization of multiwalled carbon nanotubes/poly (HEMA-co-MMA) by utilizing click chemistry, Journal of Nanoscience and Nanotechnology 16(3) (2016) 2975-2978.
[376] P. Baishya, T.K. Maji, Studies on effects of different cross-linkers on the properties of starch-based wood composites, ACS Sustainable Chemistry & Engineering 2(7) (2014) 1760- 1768.
[377] Z. Yang, L. Cao, J. Li, J. Lin, J. Wang, Facile synthesis of Cu-BDC/Poly (N-methylol acrylamide) HIPE monoliths via CO2-in-water Emulsion stabilized by metal-organic framework, Polymer 153 (2018) 17-23.
[378] M.D. Stephenson, M.J. Hardie, Network structures with 2,2′-bipyridine-3,3′diol: a discrete Co(III) complex that forms a porous 3-D hydrogen bonded network, and Cu(II) coordination chains, CrystEngComm 9(6) (2007) 496-502.
[379] A. Reynal, J. Etxebarria, N. Nieto, S. Serres, E. Palomares, A. Vidal‐Ferran, A bipyridine‐ based “Naked‐Eye” fluorimetric Cu2+ chemosensor, European Journal of Inorganic Chemistry 2010(9) (2010) 1360-1365.
[380] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 27(18) (2006) 3413-3431.
[381] M. Manjuladevi, R. Anitha, S. Manonmani, Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel, Applied Water Science 8(1) (2018) 36.
[382] A. Touati, T. Hammedi, W. Najjar, Z. Ksibi, S. Sayadi, Photocatalytic degradation of textile wastewater in presence of hydrogen peroxide: Effect of cerium doping titania, Journal of Industrial and Engineering Chemistry 35 (2016) 36-44.
[383] A. Kushniarou, I. Garrido, J. Fenoll, N. Vela, P. Flores, G. Navarro, P. Hellín, S. Navarro, Solar photocatalytic reclamation of agro-waste water polluted with twelve pesticides for agricultural reuse, Chemosphere 214 (2019) 839-845.
[384] A.B. dos Santos, F.J. Cervantes, J.B. van Lier, Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology, Bioresource Technology 98(12) (2007) 2369-2385.
[385] S. Senthilvelan, V.L. Chandraboss, B. Karthikeyan, L. Natanapatham, M. Murugavelu, TiO2, ZnO and nanobimetallic silica catalyzed photodegradation of methyl green, Materials Science in Semiconductor Processing 16(1) (2013) 185-192.
[386] K. Motora, C-M, Wu, Magnetically separable highly efficient full spectrum light driven WO2.72-Fe3O4 nanocomposite for photocatalytic reduction of Cr(VI) and organic dye degradation, Journal of the Taiwanese Institute of Chemical Engineers 00 (2020) 1-10.
[387] J. García-Montaño, X. Domènech, J.A. García-Hortal, F. Torrades, J. Peral, The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal, Journal of Hazardous Materials 154(1) (2008) 484-490.
[388] W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, L.C. Sim, An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane, Environmental Science and Pollution Research 27(3) (2020) 2522-2565.
[389] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358) (1972) 37-38.
[390] L. Junwu, Z. Zhixiang, Z. Kaihui, W. Yucheng, Preparation and characterization of Fe3+-

doped nanometer TiO2 photocatalysts, Journal of Wuhan University of Technology-Mater. Sci. Ed. 21(3) (2006) 57-60.
[391] X. Zhang, X. Liu, C. Fan, Y. Wang, Y. Wang, Z. Liang, A novel BiOCl thin film prepared by electrochemical method and its application in photocatalysis, Applied Catalysis B: Environmental 132-133 (2013) 332-341.
[392] L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity, Journal of The Electrochemical Society 164(9) (2017) H651-H656.
[393] W. Wan, R. Zhang, M. Ma, Y. Zhou, Monolithic aerogel photocatalysts: a review, Journal of Materials Chemistry A 6(3) (2018) 754-775.
[394] A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications, Chemical Reviews 102(11) (2002) 4243-4266.
[395] J. Cai, S. Liu, J. Feng, S. Kimura, M. Wada, S. Kuga, L. Zhang, Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel, Angewandte Chemie International Edition 51(9) (2012) 2076-2079.
[396] B. Thomas, M.C. Raj, A.K. B, R.M. H, J. Joy, A. Moores, G.L. Drisko, C. Sanchez, Nanocellulose, a versatile green platform: From biosources to materials and their applications, Chemical Reviews 118(24) (2018) 11575-11625.
[397] W. Zhang, X. Wang, Y. Zhang, B. van Bochove, E. Mäkilä, J. Seppälä, W. Xu, S. Willför,

C. Xu, Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes, Separation and Purification Technology 242 (2020) 116523.
[398] M. Li, J. Qiu, J. Xu, J. Yao, Cellulose/TiO2-based carbonaceous composite film and aerogel for highly efficient photocatalysis under visible light, Industrial & Engineering Chemistry Research 59(31) (2020) 13997-14003.
[399] L. Tan, C. Yu, M. Wang, S. Zhang, J. Sun, S. Dong, J. Sun, Synergistic effect of adsorption and photocatalysis of 3D g-C3N4-agar hybrid aerogels, Applied Surface Science 467-468 (2019) 286-292.
[400] D.A. Reddy, J. Choi, S. Lee, R. Ma, T.K. Kim, Self-assembled macro porous ZnS– graphene aerogels for photocatalytic degradation of contaminants in water, RSC Advances 5(24) (2015) 18342-18351.
[401] O. Sacco, V. Vaiano, C. Daniel, W. Navarra, V. Venditto, Removal of phenol in aqueous media by N-doped TiO2 based photocatalytic aerogels, Materials Science in Semiconductor Processing 80 (2018) 104-110.
[402] C. Fan, Q. Liu, T. Ma, J. Shen, Y. Yang, H. Tang, Y. Wang, J. Yang, Fabrication of 3D CeVO4/graphene aerogels with efficient visible-light photocatalytic activity, Ceramics International 42(8) (2016) 10487-10492.
[403] G. Lusvardi, C. Barani, F. Giubertoni, G. Paganelli, Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants, Materials 10(10) (2017) 1208.
[404] Z. Xu, X. Jiang, H. Zhou, J. Li, Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents, Cellulose 25(2) (2018) 1217-1227.

無法下載圖示 全文公開日期 2024/02/05 (校內網路)
全文公開日期 2026/02/05 (校外網路)
全文公開日期 2029/02/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE