簡易檢索 / 詳目顯示

研究生: 蔡佩容
Pei-Jung Tsai
論文名稱: 軟注入鎖定環形振盪器及其在時間量測上的應用
Soft-Injection-Locked Ring Oscillator and its Application in Time Period Measurement
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 呂學坤
Shyue-Kung Lu
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: 時間至數位轉換器(TDC)游標卡尺TDC軟注入鎖定環形振盪器
外文關鍵詞: Time-to-digital converter, vernier-based TDC, soft-injection-locked ring oscillator
相關次數: 點閱:366下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時間至數位轉換器是時間測量系統中相當重要的區塊,且針對不同的使用需求至今已發展出各式架構,其中游標卡尺法在追求高解析度上為眾多實現方式中的翹楚,但其量測範圍卻有無法超過一個參考週期的限制,因此有研究團隊提出以三個鎖相迴路做為時脈來源實現時間至數位轉換器,以達量測範圍不受限的目的,但在實際使用上需經外部繁雜的校正步驟才能使鎖相迴路鎖定在預期頻率,因此不具量產可能。有鑑於此,本論文將提出新的振盪電路:軟注入鎖定環形振盪器,利用高Q值的石英晶體對環形振盪器做軟注入鎖定,使振盪器能在訊號觸發後立即起振,且初始振盪頻率相當接近預期頻率,搭配修正公式更能於較長的待測時間使誤差落於±0.01%之內。另外,本電路架構可直接由40及74系列IC實現,相較於一般利用下線流程或FPGA實現的時間至數位轉換器,不僅能快速實現及驗證電路,更能有效降低成本,具大量生產的可能,對工業電子而言更是一大突破及貢獻。


    A time-to-digital converter (TDC) plays an important role in time period measurement. Many kinds of TDC structure were developed for different requirements. Among them, the vernier-based time-to-digital converter is the best in terms of highly accurate time resolution. However, the input time period cannot exceed a period of the reference clock for the conventional vernier-based TDC. Therefore, a TDC structure that employs three PLL as reference clocks was purposed in literature for increasing the range of allowable time period. However it needs complicated calibration procedure. This makes it difficult in use practically. In this thesis, we purpose a new oscillation circuit for the TDC, a soft-injection-locked ring oscillator. It can oscillate immediately right after the trigger signal arrives. For measuring a long period of time, the deviation is less than 0.01% with correction formula. Moreover, the TDC structure employing the purposed oscillator can be implemented in 40- and 74-series ICs. Compared with the full-custom design flow or FPGA, the TDC in this thesis can be verified quickly and possesses very low manufacturing coast.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法與工具 3 1.4 論文架構 3 第二章 各式時間至數位轉換器簡介 4 2.1 時間至數位轉換器簡介 4 2.2 時間至數位轉換器分類 5 2.2.1 計數器法 5 2.2.2 脈衝寬度拓展法 6 2.2.3 脈衝縮減延遲法 8 2.2.4 以FPGA實現之TDC 10 2.2.5 游標卡尺法及其分支 13 2.2.6 改良前時間至數位轉換器 17 2.3 各種方法之比較 21 第三章 時間至數位轉換器系統分析 22 3.1 本論文所使用之時間至數位轉換器架構 22 3.2 振盪器電路 27 3.2.1 石英晶體特性 27 3.2.2 各式石英晶體等效模型分析 29 3.2.3 石英振盪器常用接法及分析[18] 33 3.2.4 注入鎖定 39 3.2.5 軟注入鎖定環形振盪器 41 3.3 相位比較器 43 3.4 同步計數器 45 第四章 硬體電路實做結果 47 4.1 頻率振盪器 47 4.2 相位比較器 63 4.3 計數器 65 4.4 時間至數位轉換器 67 4.4.1 誤差範圍討論 67 4.4.2 實驗量測結果 69 第五章 結論與未來展望 95 5.1 結論 95 5.2 未來展望 96 參考文獻 97

    [1] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, "A low-power CMOS time-to-digital converter," IEEE J. Solid-State Circuit, vol.30, no.9, pp.984-990, Sept. 1995.
    [2] K. Maatta and J. Kostamovaara, "A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications," IEEE Trans. Instrum. Meas., vol. 47, pp. 521-536, Apr. 1998.
    [3] B. K. Swann, B. J. Blalock, L. G. Clonts, D. M. Binkley, J. M. Rochelle, E. Breeding, K. M. Baldwin, "A 100-ps time-resolution CMOS time-to-digital converter for positron emission tomography imaging applications," IEEE J. Solid-State Circuit, vol. 39, pp. 1839-1852, Nov. 2004.
    [4] J. Kolakowski, R. Michnowski, P. Makal, "Application of time to digital converter in I-UWB positioning system receiver," in Radar Conf., European, 2009, pp. 366-369.
    [5] R. Nutt, "Digital Time Intervalometer," Rev. Sci. Instrum., vol. 39, no.9, pp. 1342-1345, 1968.
    [6] C. Poki, Chun-Chi Chen, You-Sheng Shenet, "A Low-Cost Low-Power CMOS Time-to-Digital Converter Based on Pulse Stretching," IEEE Trans. on Nucl. Sci., vol. 53, no.4, pp. 2215-2220, Aug. 2006.
    [7] C. Poki, Shen-Iuan Liu, Jingshown Wu, "Highly accurate cyclic CMOS time-to-digital converter with extremely low power consumption," IEEE Electro. Lett., vol. 33, no.10, pp. 858-860, May 1997.
    [8] J. Kalisz, R. Szplet, J. Pasierbinski, A. Poniecki, "Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution," IEEE Trans. Instrum. Meas., vol. 46, pp. 51-55, 1997.
    [9] J. Rose, A. El Gamal, A. Sangiovanni-Vincentelli, "Architecture of field-programmable gate arrays," Proc. IEEE, vol. 81, pp. 1013-1029, 1993.
    [10] T. E. Rahkonen and J. T. Kostamovaara, "The use of stabilized CMOS delay lines for the digitization of short time intervals," IEEE J. Solid-State Circuit, vol. 28, pp. 887-894, 1993.
    [11] P. Dudek, S. Szczepanski, J. V. Hatfield, "A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line," IEEE J. Solid-State Circuit, vol. 35, pp. 240-247, 2000.

    [12] G. H. Li and H. P. Chou, "A high resolution time-to-digital converter using two-level vernier delay line technique," IEEE Nucl. Sci. Symposium Conf. Record, 2007, pp. 276-280.
    [13] V. Ramakrishnan and P. T. Balsara, "A wide-range, high-resolution, compact, CMOS time to digital converter," 19th Int.l Conf. VLSI Design, jointly with 5th Int. Conf. Embedded Systems and Design, 2006.
    [14] H. Chan and G. W. Roberts, "A deep sub-micron timing measurement circuit using a single-stage Vernier delay line," in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2002, pp. 77-80.
    [15] C. Poki, Jia-Chi Zheng, Chun-Chi Chen, "A monolithic vernier-based time-to-digital converter with dual PLLs for self-calibration," in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2005, pp. 321-324.
    [16] C. Poki, Chun-Chi Chen, Jia-Chi Zheng, You-Sheng Shen, "A PVT Insensitive Vernier-Based Time-to-Digital Converter With Extended Input Range and High Accuracy," IEEE Trans. on Nucl. Sci., vol. 54, pp. 294-302, Apr. 2007.
    [17] 劉亭均,具數位校準之時間至數位轉換器。碩士論文,台灣科技大學,2008.
    [18] 高耀煌,射頻鎖相迴路IC設計。滄海書局,2005
    [19] S. Kobayashi and T. Kimura, "Injection locking characteristics of an AlGaAs semiconductor laser," IEEE J. Quantum Electron., vol. 16, pp. 915-917, 1980.
    [20] H. Li and N. B. Abraham, "Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator," IEEE J. Quantum Electron., vol. 25, pp. 1782-1793, 1989.
    [21] M. J. E. Lee, W. J. Dally, T. Greer, N. Hiok-Tiaq, R. Farjad-Rad, J. Poulton, R. Senthinathan, "Jitter transfer characteristics of delay-locked loops - theories and design techniques," IEEE J. Solid-State Circuits,vol. 38, pp. 614-621, 2003.
    [22] N. Hiok-Tiaq, R. Farjad-Rad, M. J. E. Lee, W. J. Dally, T. Greer, J. Poulton, H. H. Edmondson, R. Rathi, R. Senthinathan, "A second-order semidigital clock recovery circuit based on injection locking," IEEE J. Solid-State Circuits, vol. 38, pp. 2101-2110, 2003.
    [23] B. Mesgarzadeh and A. Alvandpour, "A study of injection locking in ring oscillators," in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), vol. 6, pp. 5465-5468, 2005.
    [24] B. Razavi, "A study of injection locking and pulling in oscillators," IEEE J. Solid-State Circuits, vol. 39, pp. 1415-1424, 2004.
    [25] R. Adler, "A study of locking phenomena in oscillators," Proc. IEEE, vol. 61, pp. 1380-1385, 1973.

    [26] B. Mesgarzadeh and A. Alvandpour, "First-Harmonic Injection-Locked Ring Oscillators," in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2006, pp. 733-736.
    [27] M. S. McCorquodale, G. A. Carichner, J. D. O'Day, S. M.P ernia, S. Kubba, E. D. Marsman, J. J. Kuhn, R. B. Brown, "A 25-MHz Self-Referenced Solid-State Frequency Source Suitable for XO-Replacement," IEEE Trans. Circuits Syst. I: Regular Paper, vol. 56, pp. 943-956, 2009.
    [28] M. S. McCorquodale, J. D. O'Day, S. M. Pernia, G. A. Carichner, S. Kubba, R. B. Brown, "A Monolithic and Self-Referenced RF LC Clock Generator Compliant With USB 2.0," IEEE J. Solid-State Circuits, vol. 42, pp. 385-399, Feb 2007.
    [29] M. S. McCorquodale, "Self-referenced, trimmed and compensated RF CMOS harmonic oscillators as monolithic frequency generators," in Proc. IEEE Int. Frequency Control Sym. (IFSC), pp. 408-413, May 2008.
    [30] Tektronix, Understanding and Characterizing Timing Jitter. 2003.
    [31] Renesas, Datasheet of HD74LS74A Dual D-Type Positive Edge-triggered Flip-Flops. 2005

    無法下載圖示 全文公開日期 2016/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE