Basic Search / Detailed Display

Author: 陳穎聰
Ying-Tsung Chen
Thesis Title: IEEE 802.11 行動隨意網路之同步與省電機制設計
Design of Synchronization and Power Saving Mechanisms for IEEE 802.11 Mobile Ad Hoc Networks
Advisor: 馮輝文
Huei-Wen Ferng
Committee: 陳金蓮
Jean-Lien Chen
蔡志宏
Zse-Hong Tsai
吳中實
Jung-Shyr Wu
賴源正
Yuan-Cheng Lai
Degree: 碩士
Master
Department: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
Thesis Publication Year: 2006
Graduation Academic Year: 94
Language: 中文
Pages: 56
Keywords (in Chinese): 省電機制睡眠模式時間同步隨意網路分散協調式功能多跳式網路無線網路
Keywords (in other languages): power saving, sleeping mode, synchronization, ad hoc network, DCF, multi-hop, wireless network
Reference times: Clicks: 240Downloads: 2
Share:
School Collection Retrieve National Library Collection Retrieve Error Report

本論文研究的重點在於 IEEE 802.11多跳的行動隨意網路中同步問題與省電機制, IEEE 802.11 分散協調式功能(Distributed Coordination Function; DCF)的省電機制是針對單跳網路所設計,所以應用於多跳(Multi-Hop)的行動隨意網路(Mobile Ad Hoc Network; MANET)時會發生同步問題,因此我們針對同步問題提出解決機制,並且針對原有的DCF省電機制在低網路交通量情況之下做一重新設計,使得在網路交通量較低的環境中能夠有更加顯著的省電效果。對於各行動節點尚未同步的網路,相關文獻中有提出改善機制使節點同步化,在部分機制中節點會增加保持於主動模式的信標週期而額外消耗一些能源,因此我們提出了一個可調式全醒週期同步機制(Adjustable Wake-Up Interval; AWI)來解決同步問題,同時將額外能源消耗盡可能地降低,在網路已逐漸同步後,使用AWI同步機制會減少保持於主動模式的信標週期節省能源消耗。此外,我們進一步提出一個適用於低網路交通量的動態調整ATIM視窗省電機制(Dynamic ATIM Window Adaptive; DAWA),經模擬後DAWA省電機制在網路交通量不高時會有著比DCF省電機制還要良好的省電效果。最後將AWI與DAWA兩個機制做一整合,整合之後的AWI-DAWA機制適合於網路交通量不高的多跳行動隨意網路,在這樣的環境之下可讓節點達到同步,同時又可降低節點的能源消耗。


This thesis mainly focuses on synchronization and power saving for the IEEE 802.11 mobile ad hoc network (MANET). Since the IEEE 802.11 power saving (PS) scheme working in the distributed coordination function (DCF) mode was initially designed for single-hop networks, the asynchronous problem may occur when directly applying the PS scheme to the multi-hop MANET. Hence, we design a new synchronization mechanism and propose a new power saving mechanism working under the low traffic load condition. Due to the fact that synchronization schemes proposed in the literature still make nodes to be synchronized consume extra energy when staying in the periodical active mode, we propose an adjustable wake-up interval (AWI) synchronization mechanism to achieve synchronization with lower power consumption compared to those schemes previously proposed in the literature. Moreover, a dynamic ATIM window adaptive (DAWA) PS mechanism is also proposed for the low traffic load condition to further save power. Through simulation studies, we illustrate that DAWA PS mechanism outperforms the IEEE 802.11 PS scheme. Finally, integration of AWI and DAWA enables one to achieve both synchronization and low power consumption in the IEEE 802.11 MANET.

中文摘要i 英文摘要ii 目錄iii 表格目錄v 圖形目錄vi 1 緒論1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 研究目標. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 相關文獻回顧6 2.1 省電機制之研究. . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 傳輸功率的控制. . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 節省功率的路由. . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 低功率的省電模式. . . . . . . . . . . . . . . . . . . . . 8 2.2 IEEE 802.11 的省電模式. . . . . . . . . . . . . . . . . 9 2.2.1 集中協調式功能的省電模式. . . . . . . . . . . . . . 9 2.2.2 分散協調式功能的省電模式. . . . . . . . . . . . . . 11 2.3 IEEE 802.11 省電模式應用於行動隨意網路 的衍生問題. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 IEEE 802.11省電模式下行動隨意網路的動 態同步機制與ATIM視窗的動態調整機制15 3.1 全醒週期架構. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 可調式全醒週期同步的機制. . . . . . . . . . . . . . . 19 3.3 可調式全醒週期同步機制下的上界與下界. . . 24 3.3.1 AWI 全醒率之上界. . . . . . . . . . . . . . . . . . . . . 25 3.3.2 AWI 全醒率之下界. . . . . . . . . . . . . . . . . . . . . 26 3.3.3 Quorum-Based 之全醒率. . . . . . . . . . . . . . . . . 27 3.3.4 AWI 與Quorum-Based 全醒率之比較. . . . . . . . 28 3.4 動態調整ATIM視窗之省電機制. . . . . . . . . . . . 31 3.5 結合可調式全醒週期與動態調整ATIM視窗之 省電機制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.6 數值結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . 39 3.6.1 模擬環境設定. . . . . . . . . . . . . . . . . . . . . . . . 39 3.6.2 數值結果討論. . . . . . . . . . . . . . . . . . . . . . . . 41 3.6.3 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 總結52 參考文獻53

[1] V. Baiamonte and C.F. Chiasserini, “An energy-efficient MAC layer scheme for 802.11-based WLANs,” in Proc. IEEE IPCCC ’04. pp. 689 – 694, 2004.
[2] G. Boggia, P. Camarda, O. Fiume and L. A. Grieco, “CF-MAC and H-MAC protocols for energy saving in wireless ad hoc networks,” in Proc. IEEE VTC ’05. pp. 2560 – 2564, May – June, 2005.
[3] J.C. Cano and P. Manzoni “Evaluating the energy-consumption reduction in a MANET by dynamically switching-off network interfaces,” in Proc. IEEE ISCC ’01. pp.186 – 191, 3-5 July, 2001.
[4] J. Chen, S.H.G. Chan, Q. Zhang, W.W. Zhu, and J. Chen “A distributed power adaptation algorithm for multimedia delivery over ad hoc networks,” in Proc. IEEE ICME ’03. pp. 6 – 9 July, 2003.
[5] H. Chen and C.W. Huang “Power management modeling and optimal policy for IEEE 802.11 WLAN systems,” in Proc. IEEE VTC ’04. pp. 4416 – 4421, 26 – 29 Sept, 2004.
[6] A.I. El-Osery, D. Baird and S. Bruder “Transmission power management in ad hoc networks: issues and advantages,” in Proc. IEEE ICNSC ’05. pp. 1043 – 1048, 19-22 March, 2005.
[7] IEEE 802.11 Working Group, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Highspeed Physical Layer Extension
in the 2.4GHz Band,” 1999.
[8] IEEE 802.11 Working Group, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Highspeed Physical Layer in the
5GHz Band,” 1999.
[9] IEEE 802.11 Working Group, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” 1999.
[10] P. Floreen, P. Kaski, J. Kohonen, and P. Orponen “Lifetime maximization for multicasting in energy-constrained wireless networks,” IEEE Journal on
Selected Areas in Communications pp:117 – 126, Jan. 2005
[11] E.S. Jung and N.H. Vaidya “An energy efficient MAC protocol for wireless LANs,” in Proc. IEEE INFOCOM ’02. pp. 1756 – 1764, 23–27 June, 2002.
[12] K.T. Jin and D.H. Cho “A new MAC algorithm based on reservation and scheduling for energy-limited ad-hoc networks,” IEEE Trans. Consumer Electronics pp:135 – 141 , Feb. 2003.
[13] J.R. Jing, Y.C. Tseng, C.S. Hsu, and T.H. Lai “Quorum-based asynchronous power-saving protocols for IEEE 802.11 ad hoc networks,” in Proc. IEEE ICPP
’03, pp. 257 – 264, 2003.
[14] J.H. Jun, Y.J. Choi, and S. Bahk “Affinity-Based Power Saving MAC Protocol in Ad Hoc Networks,” in Proc. IEEE PerCom ’05. pp. 363 – 372, 8-12 March, 2005.
[15] M. Krunz and A. Muqattash “A power control scheme for MANETs with improved throughput and energy consumption,” in Proc. IEEE WPMC ’02. pp. 771 – 775, 27-30 Oct. 2002.
[16] V. Kawadia and P.R. Kumar; “Principles and protocols for power control in wireless ad hoc networks,” IEEE Journal on Selected Areas in Communications pp:76 – 88, Jan. 2005
[17] S.W. Kwon and D.H. Cho “Asynchronous power management scheme for wireless ad-hoc networks,” in Proc. IEEE VTC ’04. pp. 2853 – 2857, 26–29 Sept. 2004.
[18] S.H. Lee and D.H. Cho “On-demand energy-efficient routing for delayconstrained service in power-controlled multihop cellular network,” in Proc. IEEE VTC ’04. pp. 3100 – 3104 , 26–29 Sept. 2004.
[19] A. Muqattash, and M.M. Krunz “A distributed transmission power control protocol for mobile ad hoc networks,” IEEE Trans. Mobile Computing pp:113 – 128, April – June 2004
[20] The network simulator – ns-2, http://www.isi.edu/nsnam/ns/
[21] A.A. Pires, J.F. de Rezende, and C. Cordeiro “ALCA: a new scheme for power control on 802.11 ad hoc networks,” in IEEE WoWMoM ’05. pp. 475 – 477, 13–16 June, 2005.
[22] Q. Qi and C. Chakrabarti “Improving the battery performance of ad-hoc routing protocols,” in IEEE SPSDI ’05. pp. 720 – 725, 2–4 Nov. 2005.
[23] G. Razzano, L. Andreani, and R. Cusani “Wireless LANs: an adaptive algorithm to reduce power consumption,” in Proc. IEEE ICC ’03 pp. 1096 – 1100, 11-15 May, 2003.
[24] A. Safwat, H. Hassanein, and H. Moufta “A MAC-based performance study of energy-aware routing schemes in wireless ad hoc networks,” in IEEE GLOBECOM ’02. pp. 47 – 51, 17–21 Nov. 2002.
[25] C.C. Shen, C. Srisathapornphat, and C. Jaikaeo “An adaptive management architecture for ad hoc networks,” IEEE Trans. Communications Magazine pp:108 – 115, Feb. 2003
[26] J.P. Sheu, C.M. Chao, and C.W. Sun “A clock synchronization algorithm for multi-hop wireless ad hoc networks,” in Proc. IEEE DCS ’04. pp. 574 – 581, 2004.
[27] C. Tang, C.S. Raghavendra, and V. Prasanna “Energy efficient adaptation of multicast protocols in power controlled wireless ad hoc networks,“ in Proc. IEEE I-SPAN ’02. pp. 80 – 85, 22–24 May, 2002 .
[28] Y.C. Tseng, C.S. Hsu, and T.Y. Hsieh “Power-saving protocols for IEEE 802.11 based multi-hop ad hoc networks” in Proc. IEEE INFOCOM ’02. pp. 200 – 209, 23–27 June, 2002.
[29] S. Takeuchi, K. Yamazaki, K. Sezaki and Y. Yasuda “An improved power saving mechanism for MAC protocol in ad hoc networks” in IEEE GLOBECOM ’04. pp. 2791 – 2796, 29 Nov. – 3 Dec. 2004.
[30] C. Taddia, A. Giovanardi and G. Mazzini “On the impact of distributed power control over multicast routing protocols,” in Proc. IEEE ISCC ’05. pp. 401 – 405, 27–30 June, 2005 .
[31] S.L. Wu and P.C. Tseng “An energy efficient MAC protocol for IEEE 802.11 WLANs” in Proc. IEEE CNSR ’04. pp. 137 – 145, 19–21 May, 2004
[32] C.H. Yeh “The advance access mechanism for differentiated service, power control, and radio efficiency in ad hoc MAC protocols,” in Proc. IEEE VTC ’03. pp. 1652 – 1657, 6–9 Oct. 2003.
[33] Y. Zhou, D.I. Laurenson, and S. McLaughlin “An effective power-saving scheme for IEEE 802.11 based multi-hop mobile ad hoc network” in Proc. IEEE VTC ’04. pp. 4762 – 4766, 26–29 Sept. 2004.

QR CODE