簡易檢索 / 詳目顯示

研究生: 王裕俊
Yu-Jyun Wang
論文名稱: 蜂巢網路中具通道衰減之D2D 通訊的模式選擇
Mode Selection for Device-to-Device Communications with Channel Fading in Underlay Cellular Network
指導教授: 鄭欣明
Shin-Ming Chen
口試委員: 鄧惟中
Wei-Chung Teng
張世豪
Shih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 30
中文關鍵詞: 模式選擇蜂巢網路裝置對裝置
外文關鍵詞: mode selection, cellular network, device-to-device
相關次數: 點閱:301下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在一般網路中D2D 的傳輸方式具有傳輸距離較短以及能源消耗上的優勢,相對
於傳統的蜂巢網路傳輸方式,更能提升網路的效能。然而,由不同種類的溝通連
結所產生的外部干擾以及由同種溝通連結所產生的內部干擾會大幅提升分析整體
網路情形的困難度。在此篇論文中,我們提供一個基地台、使用者都以Poisson
point process 來定位的可追蹤網路模型。在傳輸方面,使用近似的Gamma 衰落,
而Gil-Pelaez Theorem 可以更進一步的幫助我們推導一般性的通道衰落。然後,
也推導出以D2D 連結和蜂巢連結為參考點的覆蓋率公式。以及提出以距離為基
準的模式選擇機制來控制選擇D2D 模式的使用者數量以達到最大的平均資料傳
輸效能。最後結果顯示,這整個模型對於分析D2D 模式選擇是很有幫助的。


The device-to-device (D2D) communication can improve network performance with respect to conventional cellular network because of the short transmission distance and power consumption. However, the inter-interference caused by the different type communication links and the intra-interference caused by the same type communication links enhance the difficulty to analysis the networks. In this paper, we propose a tractable underlaying cellular network model where base-stations (BS), user equipment (UE) and devices are modeled as the points of a Poisson point process. In transmission channel, approximate exponential and gamma fading is considered. Moreover, we can derive general fading case by using Gil-Pelaez Theorem. Then, the closed-form expression of coverage probability performance is derived for both D2D links and cellular links. Furthermore, a distance-based mode selection mechanism is proposed to control the number of UE performing D2D communications to achieve maximum average transmit coverage probability. As a result, this work serves as a powerful and efficient tool for analyzing the effects of D2D mode selection.

Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Transmit Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Mode Selection and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Analysis of Transmit Power . . . . . . . . . . . . . . . . . . . . . . .15 4.2 Analysis of Success Probability: Rayleigh fading . . . . . . . . . . . .17 4.3 Analysis of Success Probability: Gamma fading . . . . . . . . . . . . . 19 5 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

[1] M. Ni, L. Zheng, F. Tong, J. Pan, and L. Cai, “A geometrical-based throughput
bound analysis for D2D communications in cellular networks,” IEEE J. Sel.
Areas Commun., vol. 33, no. 1, pp. 100 – 110, Jan. 2015.
[2] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication
in cellular networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp.
1801–1819, Fourth quarter 2014.
[3] L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Enable device-to-device communications
underlaying cellular networks: Challenges and research aspects,” IEEE
Commun. Mag., vol. 52, no. 6, pp. 90–96, Jun. 2014.
[4] A. H. Sakr and E. Hossain, “Cognitive and energy harvesting-based D2D communication
in cellular networks: Stochastic geometry modeling and analysis,”
IEEE Trans. Commun., vol. 63, no. 5, pp. 1867–1880, May 2015.
[5] C. Ma, J. Liu, X. Tian, H. Yu, Y. Cui, and X. Wang, “Interference exploitation
in D2D-enabled cellular networks: A secrecy perspective,” IEEE Trans.
Commun., vol. 63, no. 1, pp. 229–242, Jan. 2015.
[6] Q. Ye, M. Al-Shalash, C. Caramanis, and J. G. Andrews, “Resource optimization
in device-to-device cellular systems using time-frequency hopping,” IEEE
Trans. Wireless Commun., vol. 13, no. 10, pp. 5467–5480, Oct. 2014.
[7] B. Kaufman, J. Lilleberg, and B. Aazhang, “Spectrum sharing scheme between
cellular users and ad-hoc device-to-device users,” IEEE Trans. Wireless Commun.,
vol. 12, no. 3, pp. 1038–1049, Mar. 2013.
[8] A. Orsino, L. Militano, G. Araniti, A. Molinaro, and A. Iera, “Efficient data
uploading supported by D2D communications in lte-a systems,” arXiv preprint
arXiv:1503.09076v2, Oct. 2015.
[9] F. Belloni, “Fading models,” Postgraduate Course in Radio Communications,
pp. 1–4, Sep. 2004.
[10] M. Di Renzo, W. Lu, and P. Guan, “The intensity matching approach: A
tractable stochastic geometry approximation to system-level analysis of cellular
networks,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5963–5983, Sep.
2016.
[11] A. Abdi and M. Kaveh, “On the utility of gamma pdf in modeling shadow
fading (slow fading),” in Proc. IEEE VTC 1999. IEEE, May 1999.
[12] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti,
“Stochastic geometry and random graphs for the analysis and design of wireless
networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1029–1046, Sep.
2009.
[13] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic geometry for modeling,
analysis, and design of multi-tier and cognitive cellular wireless networks: A
survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 996–1019, Jul. 2013.
[14] P. Mach, Z. Becvar, and T. Vanek, “In-band device-to-device communication in
OFDMA cellular networks: A survey and challenges,” IEEE Commun. Surveys
Tuts., vol. 17, no. 4, pp. 1885–1922, Jun. 2015.
[15] 3GPP TR 22.803, v. 12.2.0, “Feasible study for proximity services (ProSe),”
Jun. 2013.
[16] X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, “An overview of 3GPP
device-to-device proximity services,” IEEE Commun. Mag., vol. 52, no. 4, pp.
40–48, Apr. 2014.
[17] D. D. Penda, L. Fu, and M. Johansson, “Mode selection for energy efficient
D2D communications in dynamic TDD systems,” in Proc. IEEE ICC 2015,
Jun. 2015, pp. 5404–5409.
[18] Y. Huang, A. A. Nasir, S. Durrani, and X. Zhou, “Mode selection, resource
allocation and power control for D2D-enabled two-tier cellular network,” arXiv
preprint arXiv:1509.00123v3, Apr. 2016.
[19] R. Wang, J. Zhang, S. Song, and K. B. Letaief, “QoS-aware joint mode selection
and channel assignment for D2D communications,” arXiv preprint arXiv:
1602.08908, Feb. 2016.
[20] X. Lin, J. G. Andrews, and A. Ghosh, “Spectrum sharing for device-to-device
communication in cellular networks,” IEEE Trans. Wireless Commun., vol. 13,
no. 12, pp. 6727–6740, Dec. 2014.
[21] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage
and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–
3134, Nov. 2011.
[22] R. Nasri and A. Jaziri, “Tractable approach for hexagonal cellular network
model and its comparison to poisson point process,” in Proc. IEEE Globecom
2015. IEEE, Dec. 2015.
[23] S. Andreev, O. Galinina, A. Pyattaev, K. Johnsson, and Y. Koucheryavy, “Analyzing
assisted offloading of cellular user sessions onto D2D links in unlicensed
bands,” IEEE J. Sel. Areas Commun., vol. 33, no. 1, pp. 67 – 80, Jan. 2015.
[24] M. G. Khoshkholgh, Y. Zhang, K.-C. Chen, K. G. Shin, and S. Gjessing, “Connectivity
of cognitive device-to-device communications underlying cellular networks,”
IEEE J. Sel. Areas Commun., vol. 33, no. 1, pp. 81 – 99, Jan. 2015.
[25] Y. Liu, “Optimal mode selection in D2D-enabled multibase station systems,”
IEEE Commun. Lett., vol. 20, no. 3, pp. 470–473, Jan. 2016.
[26] J. Kim, S. Kim, J. Bang, and D. Hong, “Adaptive mode selection in D2D
communications considering the bursty traffic model,” IEEE Commun. Lett.,
vol. 20, no. 4, pp. 712–715, Apr. 2016.
[27] H. ElSawy, E. Hossain, and M. S. Alouini, “Analytical modeling of mode selection
and power control for underlay D2D communication in cellular networks,”
IEEE Trans. Commun., vol. 62, no. 11, pp. 4147–4161, Nov. 2014.
[28] L. Wang, H. Tang, H. Wu, and G. L. Stuber, “Resource allocation for D2D communications
underlay in Rayleigh fading channels,” IEEE Trans. Veh. Technol.,
vol. 66, no. 2, Apr. 2016.
[29] S. Al-Ahmadi and H. Yanikomeroglu, “On the approximation of the generalizedk
distribution by a gamma distribution for modeling composite fading channels,”
IEEE Trans. Wireless Commun., vol. 9, no. 2, Feb. 2010.
[30] J. Gil-Pelaez, “Note on the inversion theorem,” Biometrik., vol. 38, no. 3-4, pp.
481–482, Apr. 1951.

無法下載圖示 全文公開日期 2023/01/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE