簡易檢索 / 詳目顯示

研究生: 林承翰
Cheng-Han Lin
論文名稱: 生物可分解特殊潤濕性纖維素複合材料製備及其在乳化液分離研究
Preparation of Biodegradable Super-wetting Cellulose Composites for Highly Efficient Emulsion Separations
指導教授: 王志逢
Chih-Feng Wang
賴君義
Juin-Yih Lai
口試委員: 賴君義
Juin-Yih Lai
王大銘
Da-Ming Wang
郭紹偉
Shiao-Wei Kuo
王志逢
Chih-Feng Wang
胡蒨傑
Chien-Chieh Hu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 棉花特殊潤濕性乳化液分離生物可分解低毒性
外文關鍵詞: cotton, superwetting property, emulsion separation, biodegradable, low toxicity
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於工業與科技的發展,廢棄的溶劑與油類汙染日益增多,因此高效的油水分離材料的需求日益增加。為了降低材料在製作過程與使用後廢棄物造成的二次汙染問題,本研究使用低毒性溶劑、天然材料與可生物分解高分子製備可生物降解的特殊潤濕性油水分離材料。本研究包括兩個主題,分別描述如下:

1.米糠蠟改質棉花與其油水分離應用
米糠蠟改質棉花可以透過浸泡法簡單的改質於棉花基材表面,改質後的棉花具有空氣中疏水與穩定的油下超疏水特性,因此可應用於油水分離。米糠蠟改質棉花以透過重力以及負壓抽濾的方式分離水在油中(water-in-oil)乳化液,其重力過濾與負壓抽濾通量分別為13600 L m-2 h-1 與811000 L m-2 h-1 bar-1,且過濾後濾液的油純度皆能達到99.99 wt%以上。經過分離實驗後的米糠蠟棉花將掩埋於土壤中對其生物分解性進行探討,改質後的棉花能在四週分解30.4 wt%。

2.腰果酚改質棉花與其油水分離應用
腰果酚改質棉花能透過簡單的浸泡改質來製作,透過氫鍵作用力將聚乙烯吡咯酮烷、單寧酸與腰果酚改質於棉花基材表面,以120度高溫交聯後在棉花基材表面形成穩定的疏水化學改質層,改質後的棉花具有穩定的超疏水特性,可以重力過濾與負壓抽濾的方式分離水在油中乳化液,其重力過濾與負壓抽濾通量分別為14000 L m-2 h-1 與1350000 L m-2 h-1 bar-1,分離後的濾液油純度皆能達到99.99 wt%以上,經過分離後的腰果酚改質棉花將掩埋於土壤中對其生物分解性進行探討,改質後的棉花能在四週分解22.8 wt%。
(兩個研究中皆以Span 80為界面活性劑來配置水在油中乳化液)


Abstract
Oily pollutions were growing due to the development of technology. Taking environmental protection as consideration, we prepared biodegradable superwetting material for oil/water separation by using low toxic solvent and natural ingredients. This study includes two subjects and describes as follows, respectively:
1. Preparation of Rice-Bran-Wax modified cotton for emulsion separations.
We prepared rice bran wax modified cotton through a simple dip-coating process. As-prepared rice bran wax modified cotton possessed hydrophobicity and under-oil-superhydrophobicity. It can be used for separating water-in-oil emulsions with high fluxes of 13600 L m-2 h-1 and 811000 L m-2 h-1 bar-1 via gravity-driven and pressure-driven processes, respectively. The oil purity of all filtrates was greater than 99.99 wt%. The rice bran wax modified cotton also showed well biodegradability. The rice bran wax modified cotton reached 30.4 % degradation during the fourth week.

2. Preparation of polyvinylpyrrolidone (PVP)/tannic acid (TA)/Cardanol coated cotton for emulsion separations.
Cardanol is a mainly waste from cashew industrial. We prepared superhydrophobic cotton composite from PVP, TA, Cardanol, and cotton. As-prepared material can be used for separate water-in-oil emulsion with extremely high fluxes of 14000 L m-2 h-1 and 1350000 L m-2 h-1 bar-1via gravity-driven and pressure-driven processes, respectively. The oil purity of all filtrates was greater than 99.99 wt%. The rice bran wax modified cotton also exhibited good biodegradability. The superhydrophobic cotton composite reached 22.8 % degradation during the fourth week.
(Span 80 was used as the surfactant to prepare water-in-oil emulsions)

摘要 III Abstract IV 致謝 V 總目錄 VI 圖目錄 X 表目錄 XIV 第一章、緒論 1 背景 1 1.1油/水混合液分離 1 1.2特殊潤濕性油水分離 1 1.3研究動機 2 第二章、文獻回顧 4 2.1潤濕性 4 2.1.1 接觸角 4 2.1.2 Young’s equation 5 2.1.3 粗糙表面 5 2.1.4 表面化學結構對潤濕性的影響 7 2.2 特殊潤濕性表面 8 2.2.1 天然特殊潤濕性表面 8 2.2.2 人造特殊潤濕性表面 11 2.3 特殊潤濕性表面油水分離應用 13 2.3.1 特殊潤濕性材料油水分離應用 13 2.3.2 生物基質材料油水分離應用 16 2.4 米糠蠟 20 2.5 聚乙烯吡咯烷酮 21 2.6 單寧酸 25 2.7 腰果酚 27 第三章、實驗方法與設計 30 3.1 實驗材料 30 3.2實驗儀器 33 3.3實驗步驟 37 3.3.1 超疏水米糠蠟改質棉花製備 37 3.3.2 超疏水多層結構腰果酚改質棉花製備 37 3.3.3 油水乳化液製備 39 3.3.4材料潤濕性測試 39 3.3.5油水分離裝置架設與原理 39 3.3.6 棉花填充密度最佳化實驗 41 3.4 材料鑑定與性質檢測 42 3.4.1 材料鑑定 42 3.4.1.1水接觸角量測(WCA) 42 3.4.1.2場發射掃描式電子顯微鏡(SEM) 42 3.4.2油水乳化液分離測試與檢測 42 3.4.2.1油水乳化液分離通量 42 3.4.2.2數位光學顯微鏡(Optical Microscope,OM) 43 3.4.2.3動態光散射儀(Dynamic Light Scattering ,DLS) 43 3.4.2.4庫倫卡爾費休滴定儀(Karl Fischer Titrando,KFT) 44 3.4.2.4乳化液分離重複測式 44 3.4.3 生物分解性實驗 44 第四章、米糠蠟改質棉花於乳化液分離之應用 45 4.1 米糠蠟改質棉花超疏水表面改質表面性能鑑定 45 4.1.1 SEM表面分析 45 4.1.2 EDS表面分析 46 4.2 潤濕特性探討 48 4.2.1空氣中表面接觸角 48 4.2.2 油下疏水特性 49 4.3 乳化液分離 51 4.3.1 乳化液分離密度最佳化實驗 51 4.3.2 乳化液分離表現 52 4.4重複與耐用性測試 57 4.5 生物分解性實驗 58 第五章、腰果酚改質棉花於乳化液分離之應用 60 5.1 腰果酚改質棉花超疏水表面改質表面性能鑑定 60 5.1.1 SEM表面分析 60 5.1.2 XPS表面分析 61 5.2 潤濕特性探討 65 5.2.1空氣中表面接觸角 65 5.2.2 水滴不沾附特性 67 5.3 乳化液分離 68 5.4.1 乳化液分離密度最佳化實驗 68 5.4.2 乳化液分離表現 70 5.4 重複與耐用性測試 75 5.5生物分解性實驗 77 第六章、結論 78 第七章、參考文獻 79

[1] G. W. Miller, Integrated concepts in water reuse: managing global water needs, Desalination, 187(1-3) (2006) 65-75.
[2] Z. G. Jiang, Z. Y. Ding, H. Zhang, W. Cai, Y. Liu, Data-driven ecological performance evaluation for remanufacturing process, Energy Conversion and Management, 198 (2019) 12.
[3] F. Silva, N. Silva, I. A. da Silva, P. P. Brasileiro, J. M. Luna, R. D. Rufino, V. A. Santos, L. A. Sarubbo, Oil removal efficiency forecast of a Dissolved Air Flotation (DAF) reduced scale prototype using the dimensionless number of Damkohler, Journal of Water Process Engineering, 23 (2018) 45-49.
[4] J. L. Ge, D. D. Zong, Q. Jin, J. Y. Yu, B. Ding, Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions, Advanced Functional Materials, 28(10) (2018) 10.
[5] J. D. Brassard, D. K. Sarkar, J. Perron, Fluorine based superhydrophobic coatings, Applied Science, 2(2) (2012) 453-464.
[6] J. D. Brassard, D. K. Sarkar, J. Perron, Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films, ACS Applied Materials & Interfaces, 3(9) (2011) 3583-3588.
[7] J. H. Xu, Z.W. Liu, D.Y. Zhao, N. Y. Gao, X. Fu, Enhanced adsorption of perfluorooctanoic acid (PFOA) from water by granular activated carbon supported magnetite nanoparticles, Science of The Total Environment, 723 (2020) 9-15.
[8] Y. Huang, D. K. Sarkar, X. G. Chen, A one-step process to engineer superhydrophobic copper surfaces, Materials Letters, 64(24) (2010) 2722-2724.
[9] N. Saleema, D. K. Sarkar, D. Gallant, R. W. Paynter, X.G. Chen, Chemical Nature of Superhydrophobic Aluminum Alloy Surfaces Produced via a One-Step Process Using Fluoroalkyl-Silane in a Base Medium, ACS Applied Materials & Interfaces, 3(12) (2011) 4775-4781.
[10] H. Zhou, H. X. Wang, H. T. Niu, Y. Zhao, Z. G. Xu, T. Lin, A Waterborne Coating System for Preparing Robust, Self-healing, Superamphiphobic Surfaces, Advanced Functional Materials, 27(14) (2017) 8.
[11] S. M. Hussain, L. K. Braydich-Stolle, A. M. Schrand, R. C. Murdock, K. O. Yu, D. M. Mattie, J. J. Schlager, M. Terrones, Toxicity Evaluation for Safe Use of Nanomaterials: Recent Achievements and Technical Challenges, Advanced Functional Materials, 21(16) (2009) 1549-1559.
[12] S. W. Gao, X. L. Dong, J. Y. Huang, S. H. Li, Y. W. Li, Z. Chen, Y. K. Lai, Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation, Chemical Engineering Journal, 333 (2018) 621-629.
[13] T. Young, An Essay on chosen fluids, Philosophical Transactions of the Royal Society of London, 1805. 95: p. 65-87
[14] R. N. Wenzel, Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
[15] A. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of Faraday society, 1944. 40: p. 546-551.
[16] H. W. Hou, Y. Xie, Q. Li, Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons, Crystal Growth & Design, 5(1) (2005) 201-205.
[17] L. Y. Huang, Z. L. Liu, Y. M. Liu, Y. J. Gou, Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil, International Journal of Thermal Sciences 50(4) (2011) 432-439.
[18] X. Hao, J. G. Hu, Z. J. Zhang, Y. Q. Luo, H. S. Hou, G. Q. Zou, X. B. Ji, Interfacial regulation of dendrite-free zinc anodes through a dynamic hydrophobic molecular membrane, Journal of Materials Chemistry A 9(25) (2021) 14265-14269.
[19] O. Seneque, J. M. Latour, Coordination properties of zinc finger peptides revisited: ligand competition studies reveal higher affinities for zinc and cobalt, Journal of the American Chemical Society, 132(50) (2010) 17760-17774.
[20] X. J. Feng, J. Zhai, L. Jiang, The fabrication and switchable superhydrophobicity of TiO2 nanorod films, Angewandte Chemie-International Edition, 44(32) (2005) 5115-5118.
[21] R. L. Yue, D. Meng, Y. Ni, Y. Jia, G. Liu, J. Yang, H. D. Liu, X. F. Wu, Y. F. Chen, One-step flame synthesis of hydrophobic silica nanoparticles, Powder Technology, 235 (2013) 909-913.
[22] J. X. Zhang, L. G. Zhang, X. Gong, Large-scale spraying fabrication of robust fluorine-free superhydrophobic coatings based on dual-sized silica particles for effective antipollution and strong buoyancy, Langmuir, 37(19) (2021) 6042-6051.
[23] B. Y. Chen, J. H. Qiu, E. Sakai, N. Kanazawa, R. L. Liang, H. X. Feng, Robust and superhydrophobic surface modification by a "paint plus adhesive" method: applications in self-cleaning after oil contamination and oil water separation, ACS Applied Materials & Interfaces, 8(27) (2016) 17659-17667.
[24] W. S. Y. Wong, Z. H. Stachurski, D. R. Nisbet, A. Tricoli, Ultra-durable and transparent self-cleaning surfaces by large-scale self-assembly of hierarchical interpenetrated polymer networks, ACS Applied Materials & Interfaces, 8(21) (2016) 13615-13623.
[25] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202(1) (1997) 1-8.
[26] X.F. Gao, L. Jiang, Water-repellent legs of water striders, Nature, 432(7013) (2004) 36-36.
[27] T. K. Chen, Q. Cong, Y. C. Qi, J. F. Jin, K. L. Choy, Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired antiicing surfaces, Plos One 13(1) (2018 ) 0188175.
[28] L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B.Q. Liu, L. Jiang, D. B. Zhu, Super-hydrophobic surfaces: From natural to artificial, Advanced Materials,14(24) (2002) 1857-1860.
[29] S. G. Lee, H. S. Lim, D. Y. Lee, D. Kwak, K. Cho, Tunable Anisotropic Wettability of Rice Leaf-Like Wavy Surfaces, Advanced Functional Materials, 23(5) (2013) 547-553.
[30] H. J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, W. Barthlott, Superhydrophobicity in perfection: the outstanding properties of the lotus leaf, Beilstein Journal of Nanotechnology 2 (2011) 152-161.
[31] O. Sato, S. Kubo, Z. Z. Gu, Structural Color Films with Lotus Effects, Superhydrophilicity, and Tunable Stop-Bands, Accounts of Chemical Research, 42(1) (2009) 1-10.
[32] R. J. Cicerone, M. J. Molina, D. R. Blake, F. Sherwood Rowland (1927-2012), Science, 336(6078) (2012) 170-170.
[33] M. H. Jin, X. J. Feng, J. M. Xi, J. Zhai, K. W. Cho, L. Feng, L. Jiang, Super-hydrophobic PDMS surface with ultra-low adhesive force, Macromolecular Rapid Communications, 26(22) (2005) 1805-1809.
[34] Y. Masuda, T. Sugiyama, K. Koumoto, Micropatterning of anatase TiO2 thin films from an aqueous solution by a site-selective immersion method, Journal of Materials Chemistry, 12(9) (2002) 2643-2647.
[35] Z. S. Saifaldeen, K. R. Khedir, M. T. Camci, A. Ucar, S. Suzer, T. Karabacak, The effect of polar end of long-chain fluorocarbon oligomers in promoting the superamphiphobic property over multi-scale rough Al alloy surfaces, Applied Surface Science, 379 (2016) 55-65.
[36] J. Guo, P. Resnick, K. Efimenko, J. Genzer, J.M. DeSimone, Alternative fluoropolymers to avoid the challenges associated with perfluorooctanoic acid, Industrial & Engineering Chemistry Research, 47(3) (2008) 502-508.
[37] J. Hopken, M. Moller, Low surface-energy polystyrene, Macromolecules, 25(5) (1992) 1461-1467.
[38] P. Graham, M. Stone, A. Thorpe, T. G. Nevell, J. Tsibouklis, Fluoropolymers with very low surface energy characteristics, Journal of Fluorine Chemistry, 104(1) (2000) 29-36.
[39] J. Tsibouklis, T.G. Nevell, Ultra-low surface energy polymers: The molecular design requirements, Advanced Materials,15(7-8) (2003) 647-650.
[40] J. Tsibouklis, M. Stone, A. A. Thorpe, P. Graham, V. Peters, R. Heerlien, J. R. Smith,
K. L. Green, T. G. Nevell, Preventing bacterial adhesion onto surfaces: the low-surface-energy approach, Biomaterials, 20(13) (1999) 1229-1235.
[41] X. B. Yang, Z. X. Wang, L. Shao, Construction of oil-unidirectional membrane for integrated oil collection with lossless transportation and oil-in-water emulsion purification, Journal of Membrane Science, 549 (2018) 67-74.
[42] C. R. Crick, J. A. Gibbins, I. P. Parkin, Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation, Journal of Materials Chemistry, A 1(19) (2013) 5943-5948.
[43] Z. J. Cheng, C. Li, H. Lai, Y. Du, H. W. Liu, M. Liu, K. N. Sun, L.G. Jin, N. Q. Zhang, L. Jiang, Recycled superwetting nanostructured copper mesh film: toward bidirectional separation of emulsified oil/water mixtures, Advanced Materials Interfaces, 3(17) (2016) 1600370.
[44] J. F. Cao, D. X. Wang, P. An, J. Zhang, S. Y. Feng, Highly compression-tolerant and durably hydrophobic macroporous silicone sponges synthesized by a one-pot click reaction for rapid oil/water separation, Journal of Materials Chemistry A, 6(37) (2018) 18025-18030.
[45] S. B. King, Mechanisms and novel directions in the biological applications of nitric oxide donors, Free Radical Biology and Medicine, 37(6) (2004) 735-736.
[46] B. B. Li, X. Y. Liu, X. Y. Zhang, J. C. Zou, W. B. Chai, J. Xu, Oil-absorbent polyurethane sponge coated with KH-570-modified graphene, Journal of Applied Polymer Science, 132(16) (2015) 41821.
[47] F. Qiang, L. L. Hu, L. X. Gong, L. Zhao, S. N. Li, L. C. Tang, Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states, Chemical Engineering Journal, 334 (2018) 2154-2166.
[48] Y. Q. Zhan, S. J. He, J. X. Hu, S. M. Zhao, G. Y. Zeng, M. Zhou, G. Y. Zhang, A. Sengupta, Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F-4@rGO composites for efficient and multitasking oil/water separation applications, Journal of Hazardous Materials, 388 (2020) 121752.
[49] Q.L. Ma, H.F. Cheng, A.G. Fane, R. Wang, H. Zhang, Recent development of advanced materials with special wettability for selective oil/water separation, Small, 12(16) (2016) 2186-2202.
[50] D. D. Ejeta, F. H. Tan, A. Mathivathanan, T. Y. Juang, M. M. Abu-Omar, C. F. Wang,
C. H. Lin, J. Y. Lai, Preparation of fluorine- and nanoparticle-free superwetting polybenzoxazine/cellulose composites for efficient oil/water separations, Separation and Purification Technology, 288 (2022) 120675.
[51] Q. Y. Cheng, X. L. Zhao, Y. X. Weng, Y. D. Li, J. B. Zeng, Fully sustainable, nanoparticle-free, fluorine-free, and robust superhydrophobic cotton fabric fabricated via an eco-friendly method for efficient oil/water separation, Acs Sustainable Chemistry & Engineering, 7(18) (2019) 15696-15705.
[52] Z. X. Wang, S. Q. Ji, J. Zhang, Q. X. Liu, F. He, S. Q. Peng, Y. X. Li, Tannic acid encountering ovalbumin: a green and mild strategy for superhydrophilic and underwater superoleophobic modification of various hydrophobic membranes for oil/water separation, Journal of Materials Chemistry A, 6(28) (2018) 13959-13967.
[53] W.F. Tinto, Waxes, Pharmacognosy 2017.
[54] M. X. Sun, A. P. Liang, G. S. Watson, J. A. Watson, Y. M. Zheng, L. Jiang, Compound microstructures and wax layer of beetle elytral surfaces and their influence on wetting properties, Plos One, 7(10) (2012).
[55] F. J. Wang, T. Xie, W. Zhong, J. F. Ou, M. S. Xue, W. Li, A renewable and biodegradable all-biomass material for the separation of oil from water surface, Surface & Coatings Technology, 372 (2019) 84-92.
[56] W. H. Li, P. B. Liu, H. W. Zou, P. Fan, W. Xu, pH sensitive microporous polypropylene membrane prepared through ozone induced surface grafting, Polymers for Advanced Technologies, 20(3) (2009) 251-257.
[57] B. S. Qian, J. Li, Q. Wei, P. L. Bai, B. H. Fang, C. S. Zhao, Preparation and characterization of pH-sensitive polyethersulfone hollow fiber membrane for flux control, Journal of Membrane Science, 344(1-2) (2009) 297-303.
[58] S. Nazir., A. M. M. Amer., Formulation development of metformin tablet and its comparative In-vitro study with different brands in Pakistan, International Journal of Pharmaceutical Sciences Review and Research, 19(2) (2013) 12-17.
[59] D. S. Wang, Q. Wei, Y. J. Zhang, C. S. Zhao, Molecularly imprinted polyethersulfone microfibers for the binding and recognition of bisphenol A, Journal of Applied Polymer Science, 114(6) (2009) 4036-4041.
[60] K. Yang., Z. Liu., M. Mao., X. Zhang., C. Zhao., N. Nishi., Molecularly imprinted polyethersulfone microspheres for the binding and recognition of bisphenol A, Analytica Chimical Acta (2005) 30–36.
[61] J. Barzin, C. Feng, K.C. Khulbe, T. Matsuura, S. S. Madaeni, H. Mirzadeh, Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy, Journal of Membrane Science, 237(1-2) (2004) 77-85.
[62] L. L. Li, Z. H. Yin, F. L. Li, T. Xiang, Y. Chen, C.S. Zhao, Preparation and characterization of poly(acrylonitrile-acrylic acid-N-vinyl pyrrolidinone) terpolymer blended polyethersulfone membranes, Journal of Membrane Science, 349(1-2) (2010) 56-64.
[63] S. Q. Nie, H. Qin, L. L. Li, C. M. Zhang, W. Yan, Y. Liu, J. Luo, P. Chen, Influence of brush length of PVP chains immobilized on silicon wafers on their blood compatibility, Polymers for Advanced Technologies, 29(2) (2018) 835-842.
[64] M. Julinova, J. Kupec, R. Slavik, M. Vaskova, Initiating biodegradation of polyvulpyrrolidone in an aqueous aerobic environment: technical note, Ecological Chemistry and Engineering S, 20(1) (2013) 199-208.
[65] U. Hayat, A. Raza, J. Y. Wang, Preparation of Zein/PVP based conduits with tunable degradation, Polymer Degradation and Stability, 181 (2020) 190303.
[66] J. Z. Hou, G.B. Zhou, J. L. Hu, Y. H. Wang, S. Gao, Preparation and evaluation of PLA/PVP core-shell microparticles mat via single capillary electrospraying as a potential drug-loading material, Polymer Bulletin, 79(4) (2022) 2173-2188.
[67] R. Y. Ma, D. S. Xiong, F. Miao, J. F. Zhang, Y. Peng, Friction properties of novel PVP/PVA blend hydrogels as artificial cartilage, Journal of Biomedical Materials Research Part A, 93A(3) (2010) 1016-1019.
[68] H. L. A. El-Mohdy, S. Ghanem, Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by gamma-irradiation, Journal of Polymer Research, 16(1) (2009) 1-10.
[69] V. Rouchon, S. Bernard, Mapping iron gall ink penetration within paper fibres using scanning transmission X-ray microscopy, Journal of Analytical Atomic Spectrometry, 30(3) (2015) 635-641.
[70] S. Quideau, D. Deffieux, C. Douat-Casassus, L. Pouysegu, Plant Polyphenols: Chemical properties, biological activities, and Synthesis, Angewandte Chemie-International Edition, 50(3) (2011) 586-621.
[71] H. Ejima, J. J. Richardson, K. Liang, J. P. Best, M.P. van Koeverden, G. K. Such, J. W. Cui, F. Caruso, One-step assembly of coordination complexes for versatile film and particle engineering, Science, 341(6142) (2013) 154-157.
[72] T. Liu, M. K. Zhang, W. L. Liu, X. Zeng, X. L. Song, X. Q. Yang, X. Z. Zhang, J. Feng, metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications, Acs Nano 12(4) (2018) 3917-3927.
[73] W. J. Zhang, A. J. Christofferson, Q. A. Besford, J. J. Richardson, J. L. Guo, Y. Ju, K. Kempe, I. Yarovsky, F. Caruso, Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt-tannic acid networks, Nanoscale, 11(4) (2019) 1921-1928.
[74] J. Udomsin, A. Prasannan, C. F. Wang, J. K. Chen, H. C. Tsai, W. S. Hung, C. C. Hu, J. Y. Lai, Preparation of carbon nanotube/tannic acid/polyvinylpyrrolidone membranes with superwettability for highly efficient separation of crude oil-in-water emulsions, Journal of Membrane Science, 636 (2021) 119568.
[75] R. X. Wang, X. T. Zhao, N. Jia, L.J. Cheng, L. F. Liu, C. J. Gao, Superwetting oil/water separation membrane constructed from in situ assembled metal-phenolic networks and metal-organic frameworks, ACS Applied Materials & Interfaces, 12(8) (2020) 10000-10008.
[76] M. Fasano, T. Humplik, A. Bevilacqua, M. Tsapatsis, E. Chiavazzo, E. N. Wang, P. Asinari, Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes, Nature Communications, 7 (2016) 12762.
[77] K. Huang, G. P. Liu, J. Shen, Z. Y. Chu, H. L. Zhou, X. H. Gu, W. Q. Jin, N. P. Xu, High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates, Advanced Functional Materials, 25(36) (2015) 5809-5815.
[78] C. Voirin, S. Caillol, N. V. Sadavarte, B. V. Tawade, B. Boutevin, P. P. Wadgaonkar, Functionalization of cardanol: towards biobased polymers and additives, Polymer Chemistry, 5(9) (2014) 3142-3162.
[79] M. C. Lubi, E. T. Thachil, Cashew nut shell liquid (CNSL) - a versatile monomer for polymer synthesis, Designed Monomers and Polymers, 3(2) (2000) 123-153.
[80] A. Devi, D. Srivastava, Studies on the blends of cardanol-based epoxidized novolac resin and CTPB, European Polymer Journal, 43(6) (2007) 2422-2432.
[81] A. Devi, D. Srivastava, Studies on the blends of cardanol-based epoxidized novolac type phenolic resin and carboxyl-terminated polybutadiene (CTPB), Materials Science and Engineering: A, 458(1-2) (2007) 336-347.
[82] M. Iji, S. Moon, S. Tanaka, Hydrophobic, mechanical and thermal characteristics of thermoplastic cellulose diacetate bonded with cardanol from cashew nutshell, Polymer Journal, 43(8) (2011) 738-741.
[83] R. Krishnamoorthi, R. Anbazhagan, H. C. Tsai, C. F. Wang, J. Y. Lai, Biodegradable, superwettable caffeic acid/chitosan polymer coated cotton fibers for the simultaneous removal of oils, dyes, and metal ions from water, Chemical Engineering Journal, 427 (2022) 131902.
[84] L. S. Johansson, J. M. Campbell, O. J. Rojas, Cellulose as the in situ reference for organic XPS. Why? Because it works, Surface and Interface Analysis, 52(12) (2020) 1134-1138.
[85] Y. Wu, P. Jiang, M. Jiang, T. W. Wang, C. F. Guo, S. S. Xie, Z. L. Wang, The shape evolution of gold seeds and gold@silver core-shell nanostructures, Nanotechnology, 20(30) (2009) 305602.
[86] C. L. Jiao, Z. F. Zhang, J. Tao, D. S. Zhang, Y. Y. Chen, H. Lin, Synthesis of a poly (amidoxime-hydroxamic acid) cellulose derivative and its application in heavy metal ion removal, Rsc Advances, 7(44) (2017) 27787-27795.
[87] F. H. Kuok, H. H. Chien, C. C. Lee, Y. C. Hao, I. S. Yu, C. C. Hsu, I. C. Cheng, J. Z. Chen, Atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)-reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitors, Rsc Advances, 8(6) (2018) 2851-2857.
[88] F. Huang, Q. Li, G. S. Ji, J. Tu, N. Ding, Q. Q. Qu, G.H. Liu, Oil/water separation using a lauric acid-modified, superhydrophobic cellulose composite membrane, Materials Chemistry and Physics, 266 (2021) 124493.

無法下載圖示 全文公開日期 2025/08/26 (校內網路)
全文公開日期 2025/08/26 (校外網路)
全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE