簡易檢索 / 詳目顯示

研究生: 謝維洋
WEI-YANG HSIEH
論文名稱: 促進尿酸排泄類藥物在超臨界二氧化碳之溶解度量測
Solubility Measurement for the Uricosuric Agents in Supercritical Carbon Dioxide
指導教授: 李明哲
Ming-Jer Lee
口試委員: 陳瑞堂
Jui-Tang Chen
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 超臨界二氧化碳
外文關鍵詞: supercritical carbon dioxide
相關次數: 點閱:226下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的目標是使用一套半流動式裝置,分別量測促進尿酸排泄類藥物(丙磺舒及黃口比酮)與第二代磺醯脲類藥物(格列本脲)在超臨界二氧化碳中的平衡溶解度,溫度範圍為313.2 K~353.2 K,壓力在15 MPa~31 MPa之間。為了確保平衡釜出口之物流已達平衡,各藥品所需的最少接觸時間分別為丙磺舒1500 s,黃口比酮750 s,格列本脲1000 s。在實驗條件範圍內丙磺舒平衡溶解度介於0.13 × 10-5 ~ 1.45 × 10-5,黃口比酮平衡溶解度介於0.29 × 10-5 ~ 2.21 × 10-5,格列本脲平衡溶解度介於0.065 × 10-5 ~ 1.64 × 10-5。實驗所得的溶解度數據以兩種與密度相關之半經驗式(Chrastil模式及Mendez-Santiago-Teja模式)關聯。此兩種模式之計算誤差與實驗不確定度相近。本研究也採用Peng-Robinson狀態方程式結合雙變數vdW混合律進行溶解度數據迴歸,關聯結果尚稱合理,惟在低壓區的誤差較大些。


The solubilities of uricosuric agents (probenecid and sulfinpyrazone) and the second generation sulfonylurea drug (glibenclamide) in supercritical carbon dioxide are measured with a semi-flow type equilibrium apparatus at temperatures ranging from 313.2 K to 353.2 K and pressure from 15 MPa to 31 MPa. To ensure the output stream of equilibrium cell being saturated, the minimum contact time are 1500 s , 750 s , 1000 s for probenecid, sulfinpyrazone, glibenclamide, respectively. Over the experimental conditions, the solubilities are ranging from 0.13 × 10-5 ~ 1.45 × 10-5 for probenecid, 0.29 × 10-5 ~ 2.21 × 10-5 for sulfinpyrazone, and 0.065 × 10-5 ~ 1.64 × 10-5 for glibenclamide. The solubility data are correlated with two semi-empirical density-based models, including the Chrastil model and the Mendez-Santiago-Teja model. The deviations are within the experimental uncertainty. The Peng-Robinson equation of state with two parameters van der Waals mixing rules was adopted to correlate the solubility data. In general, the correlation results are reasonably well, expect for low pressure region.

摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 Ⅵ 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2超臨界流體 3 1-2-1 基本特性 3 1-2-2 超臨界流體相關的造粒方法 6 1-3 文獻回顧 8 1-4 降尿酸藥物 11 1-5 格列本脲 (Glibenclamide) 14 1-6 本文重點 15 第二章 藥物在超臨界二氧化碳之溶解度量測裝置與測試 27 2-1 實驗方法 27 2-1-1 藥品 27 2-1-2 實驗裝置 28 2-2 實驗操作程序 30 2-2-1 超臨界流體萃取裝置操作與程序 30 2-2-2 藥品組成分析 33 2-3 數據處理 34 2-3-1 樣品中藥物含量 34 2-3-2 超臨界二氧化碳總莫耳數 34 2-4 接觸時間對萃取溶解度的影響 36 第三章 藥物溶解度量測與數據關聯 57 3-1 量測條件 57 3-2 實驗操作程序 57 3-3 實驗結果討論 57 3-4 平衡溶解度數據關聯 59 3-4-1 半經驗式關聯 60 3-4-1-1 Christil模式關聯 60 3-4-1-2 Mendez-Santiago-Teja模式關聯 61 3-3-2 狀態方程式關聯 62 第四章 結論與建議 85 4-1 結論 85 4-2 建議 86 參考文獻 88 符號說明 99

Alberti, K. G. M., P. Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation, Diabetic Med., 15, 539-553 (1998).

Alessi, P., A. Cortesi, I. Kikic, N. R. Foster, S. J. Macnaughton, I. Colombo, Particle production of steroid drugs using supercritical fluid processing, Industrial & Engineering Chemistry Research, 35, 4718-4726 (1996).

Asghari-Khiavi, M., Y Yammi, Solubility of the drug Bisacodyl, ,methimazole, methylparaben and iodoquinol in supercritical carbon dioxide, J. Chemical & Engineering Data, 48, 61-65 (2003).

Asghari-Khiavi, M., Y. Yammo, F. A. Farajzadeh, Solubilities of two steroid drugs and their mixture in supercritical carbon dioxide, J. Supercritical Fluids, 30, 111-117 (2004).

Ashour, I., R. Almehaideb, S. E. Fateen, G. Aly, Representation of solid-supercritical fluid phase equilibria using cubic equations of state, Fluid Phase Equilibria, 167, 41-61 (2000).

Bolten, D., M. Türk, Micronisation of carbamazepine through rapid expansion of supercritical solution (RESS), J. Supercritical. Fluids, 62, 32-40 (2012).

Brennecke, J. F., C. A. Eckert, Phase equilibria for supercritical fluid process design, AlChE J., 35, 1409-1427 (1989).

Burgos-Solorzano, G. I., J. F. Brennecke, M. A. Stadtherr, Solubility measurements and modeling of molecules of biological and pharmeceutical onterest with supercritical CO2, Fluid Phase Equilibria, 220, 25-39 (2004).

Chang, S. C., M. J. Lee, H. M. Lin, Nanoparticles formation for metallocene catalyzed cyclic olefin copolymer via a continuous supercritical anti-solvent process, J. of Supercrit. Fluids, 40, 420-432 (2007).

Chrastil, J., Solubility of solids and liquids in supercritical gases, J. Phys. Chem., 86, 3016-3021 (1982).

Coutsiko, P., K. Magoulas, D. Tassios, Solubility of p-quidone and 9,10-anthraquinone in supercrtical carbon dioxide, J. Chemical & Engineering Data, 42, 463-466 (1997).

Duarte, A. R., P. Coimbra, H. C. de Sousa, C. M. M. Duarte, Solubility of flurbiprofen in supercritical carbon dioxide, J Chemical & Engineering Data, 49, 449-452 (2004).

Esfandiari, N. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide, J. of Supercritical Fluids, 100, 129-141 (2015).

Fages, J., H. Lochard, J. J. Letourneau, M. Sauceau, E. Rodier, Particle generation for pharmaceutical applications using supercritical fluid technology, Powder Technol., 141, 219-226 (2004).

Garmroodi, A., J. Hassan, Y. Yammi, Solubilities of the drug benozaine, metronidazole benzoate, and naproxen in supercritical carbon dioxide, J Chemical & Engineering Data, 49, 709-712 (2004).

Gordillo, M. D., M. A. Blanco, A. Molero, E. Martinez de la Ossa, Solubility of the antibiotic penicillin G in supercrtical carbon dioxide, J. of Supercritical Fluids , 15, 183-190 (1999).

Reh, G., E. de Vettori, Y. Wu, Y. Jarlaud, G. -K. Elbel, C. Sehgal, T. Nagakawa, M. E. Mendez, O. Berezin, V. Adão, M. Grover, V. Levy, J. Haughey, Global life sciences outlook Thriving in today’s uncertain market
(2017).

Hampson, J. W., R. J. Maxwell, S. Li, R. J. Shadwell, Solubility of three veterinary sulfonamides in supercritical carbon dioxide by a recirculting equilibrium method, J Chemical & Engineering Data, 44, 1222-12225 (1999).

Hezave, A. Z., S. Aftab, F. Esmaeilzadeh, Solubility of sulindac in the supercritical carbon dioxide: Experimental and modeling approach, J. Supercrit. Fluids, 68, 39-44 (2012).

Hojjati, M., Y. Yamini, M. Khajeh, A. Vatanara, Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations, J. of Supercritical Fluids, 41, 187-194 (2007).

Hojjati, M., A. Vatanara, Y. Yamini, M. Moradi, A. R. Najafabadi, Supercritical CO2 and highly selective aromatase inhibitor : experimental solubilities and empirical data correlatin, J. of Supercritical Fluids, 50, 203-209 (2009).

Hosseini, M. H., N. Alizadeh, A. R. Khanchi, Solubility analysis of clozapine and lamotrigine in supercritical carbon dioxide using static system, J. Supercrit. Fluids, 52, 30-35 (2010).

Huang, Z., S. Kawi, Y. C. Chiew, Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents, J. Supercrit. Fluids, 30, 25-39 (2004).

Huang, Z., W. D. Lu, S. Kawi, Y. C. Chiew, Solubility of aspirin in supercritical carbon dioxide with and without acetone, J. Chemical & Engineering Data, 49, 1323-1327 (2004).

Inzucchi, S. E., Oral antihyperglycemic therapy for type 2 diabetes: Scientific review, J. Am. Med. Assoc., 287, 360-372 (2002).

Johannsen, M., G. Brunner, Solubilities of the xanthines caffeine, theophylline and theobromine in supercritical carbon dioxide, Fluid Phase Equilibria, 95, 215-216 (1994).

Kim, S.-H., E. Jung, M. K. Yoon, O. H. Kwon, D.-M. Hwang, D.-W. Kim, J. Kim, S.-M. Lee, H. J. Yim, Pharmacological profiles of gemigliptin (LC15-0444), a novel dipeptidyl peptidase-4 inhibitor, in vitro and in vivo, European Journal of Pharmacology, 788, 54-64 (2016).

Knez, Z., M. Skerget, P. Sencar-Bozic, A. Rizner, Solubility of nifedipine and nitrendipine in supercritical CO2, J Chemical & Engineering Data, 40, 216-220 (1995).

Kumar, S. K., K. P. Johnston, Modelling the solubility of solids in supercritical fluids with density as the independent variable, J. of Supercrit. Fluids, 1, 15-22 (1988).

Kuo, C.-F., M. J. Grainge, W. Zhang, M. Doherty, Global epidemiology of gout : prevalence, incidence and risk factors, Nature reviews rheumatology 11, 649-662 (2015).

Kwak, T. Y., G. A. Mansoori, Van der waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling, Chem. Eng. Sci., 41, 1303-1309 (1986).

Lapane, K. L., B. M. Jesdale, C. E. Dube´, C. B. Pimentel, S. N. Rajpathak, Sulfonylureas and risk of falls and fractures among nursing home residents with type 2 Diabete Mellitus, Diabetes Research and Clinical Practice, 109, 411-419 (2015).

Lashkarbolooki, M., A. Z. Hezave, Y. Rahnama, R. Ozlati, H. Rajaei, F. Esmaeilzad, Solubility of cyproheptadine in supercritical carbon dioxide ; experimental and modeling approaches, J. of Supercritical Fluids, 84, 13-19 (2013).

Li H., D. Jia, Q. Zhu, B. Shen, Determination, Correlation and prediction of the solubilities of nuflimic acid, clofenamic acid and tolfenamic acid in supercritical CO2, Fluid Phase Equilibria, 392, 95-103 (2015).

Lu, B. C.-Y., D. Zhang, W. Sheng, Solubility enhancement in supercritical solvents, Pure Appl. Chem, 62, 2277-2285 (1990).

Mackay, D., A. Bobra, D. W. Chan, W. Y. Shiu, Vapor-pressure correlations for low-volatility environmental chemicals, Environ. Sci. Technol., 16, 645-649 (1982).

Macnaughton, S. J., I. Kikic, N. R. Foster, P. Alessi, A. Cortesi, I. Colombo, Solubility of anti-inflammatory drugs in supercritical carbon dioxide, J Chemical & Engineering Data, 41, 1083-1086 (1996).

Méndez-Santiago, J., A. S. Teja, The solubility of solids in supercritical fluids, Fluid Phase Equilib., 158-160, 501-510 (1999).

Morales, J. O., A. B. Watts, J. T. McConville, Mechanical particle-size reduction techniques, formulating poorly water soluble drugs, 3, 133-170 (2012).

Murga, R., M. T. Sanz, S Beltran, J. L. Cabezas, Solubility of some phenolic compounds contained in grape seeds in supercritical carbon dioxide, J. of Supercritical Fluid, 23, 113-121 (2002).

Murga, R., M. T. Sanz, S Beltran, J. L. Cabezas, Solubility of three hydroxycinnamic acid in supercritical carbon dioxide, J. of Supercritical Fluids, 27, 239-245 (2003).

Murga, R., M. T. Sanz, S Beltran, J. L. Cabezas, Solubility of syringic and vanillic acids in supercrtical carbon dioxide, J Chemical & Engineering Data, 49, 779-782 (2004).

Nadi, A. B., T. M. Zhang, W. J. Malaisse, Effects of the methyl esters of pyruvate, succinate and glutamate on the secretory response to meglitinide analogues in rat pancreatic islet, Pharmacological Research, 33, 191-194 (1996).

Peng, D. Y., D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59-64 (1976).

Perrut, M., J. Y. Clavier, Supercritical fluid formation : Process choice and scale-up, Ind. Eng, Chem. Res. 42, 6375-6383 (2003).

Reid, R. C., J. M. Prausnitz, B. E. Poling, The properties of gases and liquids, 4th ed., McGraw-Hill, New York (1987).

Reverchon, E., G. Della Porta, Particle Design using supercritical fluids, Chem. Eng. Technol., 26, 840-845 (2003).

Reverchon, E., A. Antonacci, Chitosan microparticles production by supercritical fluid processing, Ind. Eng. Chem. Research, 45, 5722-5728 (2006).

Saravana, P.S., A. T. Getachew, Y. J. Cho, J. H. Choi, Y. B. Park, H. C. Woo, B. S. Chun, Influenceof co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2, J. of Supercrtical Fluids (in press).

Sahle-Demessie, E., U. R. Pillai, S. Junsophonsri, K. L. Levien, Solubility of organic biocides in supercrtical CO2 and CO2 + cosolvent mixtures, J. Chemical & Engineering Data, 48, 541-547 (2003).

Shaw, J. E., R. A. Sicree, P. Z. Zimmet, Global estimates of prevalence of diabetes for 2010 and 2030, Diabetes Research and Clinical Practice, 87, 4-14 (2010).

Shojaee, S. A., H. Rajaei, A. Z. Hezave, M. Lashkarbolooki, F. Esmaeilzadeh, Experimental measurement and correlation for solubility of piroxicam (a non-steroidal anti-inflammatory drug (NSAIDs)) in supercritical carbon dioxide, J. of Supercritical Fluids, 80, 38-43 (2013).

Shojaee, S. A., H. Rajaei, A. Z. Hezave, M. Lashkarbolooki, F. Esmaeilzadeh, Experimental investigation and modeling of the solubility of carvedilol in supercritical carbon dioxide, J. of Supercritical Fluids, 81, 42-47 (2013).

Sodeifian, G., S. A. Sajadian, N. S. Ardestani, Determination of solubility of Aprepitant (an antiemetic drug for chemotherapy) in supercritical carbon dioxide: Empirical and thermodynamic models, Journal of Supercritical Fluids 128, 102-111 (2017).

Sovova, H., Solubilities of ferulic acid in supercritical carbon dioxide with ethanol as cosolvent, J. Chemical & Engineering Data, 46, 541-547 (2003).

Stamp, L. K., J. L. O’Donnell, P. T. Chapman, Emerging therapies in the long-term management of hyperuricaemia and gout, Internal Medicine Journal 37, 258-266 (2007).

Stassi, A., R. Bettini, A. Gazzaniga, F. Giordano, A. Schiraldi, Assessment of solubility of ketoprofen and vanilliv acid in supercritical CO2 under dynamic conditions, J Chemical & Engineering Data, 45, 161-165 (2000).

Subramaniam, B., R. A. Rajewski, K. Snavely, Pharmaceutical processing with supercritical carbon dioxide, J. Pharm. Sci., 86, 885-890 (1997).

Tabernero, A., E. M. M. del Valle, M. Á. Galán, A comparison between semiempirical equations to predict the solubility of pharmaceutical compounds in supercritical carbon dioxide, J. Supercrit. Fluids, 52, 161-174 (2010).

Tabernero, A., E. M. Martín del Valle, M. A. Galán, Supercritical fluids for pharmaceutical particle engineering: methods, basic fundamentals and modelling, Chem. Eng. Process., 60, 9-25 (2012).

Türk, M., P. Hils, B. Helfgen, K. Schaber, H. J. Martin, M. A. Wahl, Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents, J. Supercrit., Fluids 22, 75-84 (2002).

Tsai, C. C., H. M. Lin, M. J. Lee, Solubility of niflumic acid and celecoxib in supercritical carbon dioxide, J. of Supercritical Fluids, 95, 17-23 (2016).

Ugaonkar, S., T. E. Needham, G. D. Bothun, Solubility and partitioning of carbamazepine in a two-phase supercritical carbon dioxide /polyvinylpyrrolidone system, Int. J. Pharm., 403, 96-100 (2011).

Vatanara, A., A. R. Najafabadi, M. Khajeh, Y. Yammi, Solubility if some inhaled glucocorticoids in supercritical carbon dioxide, J. of Supercritical Fluids, 33, 21-25 (2005).

Yarat, A., T. Tunali, R. Yanardag, F. Gürsoy, ö. Sacan, N. Emekli, Ali. üstüner, G. Ergenekon, The effect of glurenorm (gliquidone) on lenses and skin in experimental diabetes, Free Radical Biology & Medicine, 31, 1038-1042 (2001).

Yammi, Y., J. Hassan, S. Haghgo, Solubilities of some nitrogen-containing drugs in supercrticial carbon dioxide, J Chemical & Engineering Data, 46, 451-455 (2001).

Yammi., Y., J. Arab, M. Asghari-khiavi, Solubilities of phenazopyridine, propranplol, and methimazole in supercrticial carbon dioxide, J. Pharmaceutical and Biomedical Analysis, 32, 181-187 (2003).

York, P., Strategies for particle design using supercritical fluid technologies, Pharm. Sci.Technol. Today, 2, 30-440 (1999).

蔡嘉哲,余光輝,梁統華,蔡文展,魏正宗,謝祖怡,台灣痛風與高尿酸症診療指引,中華民國風濕病醫學會,第一版 (2007).

謝永宏,楊東寶,陳俊源,高尿酸血症與痛風之介紹及其藥物治療,藥學雜誌,第24卷,第二期,第145-152頁 (2008).

劉采艷,15大國民用藥事典,人醫心傳-慈濟醫療人文月刊,106期第70-75頁 (2012).

中華民國內政部統計處,我國國人全體平均壽命成長圖,http://www.moi.gov.tw/stat/chart.aspx?ChartID=S0101, (2017).

無法下載圖示 全文公開日期 2022/08/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE