簡易檢索 / 詳目顯示

研究生: 鄭維仁
Wei-Jen Cheng
論文名稱: NASICON結構磷酸釩鈉與氟化磷酸釩鈉正極材料於鈉離子電池之研究
Study of Na3V2(PO4)3 and Na3V2(PO4)2F3 with NASICON structure for Sodium-ion Battery
指導教授: 郭俞麟
Yu-Lin Kuo
周宏隆
Hung-Lung Chou
口試委員: 洪太鋒
Tai-Feng Hung
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 鈉離子電池NASICON磷酸釩鈉氟化磷酸釩鈉碳包覆
外文關鍵詞: NVPF
相關次數: 點閱:290下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究著重於鈉離子電池正極NASICON結構材料磷酸釩鈉與氟化磷酸釩鈉之合成與特性研究,並比較二者之間的差異。實驗分別以抗壞血酸、檸檬酸作為NVP與NVPF的中孔碳包覆前驅物,以溶膠-凝膠法合成樣品。X光繞射搭配Topas軟體進行晶體結構精算,NVP之a軸為8.7336 Å、c軸長為21.8370 Å;NVPF之a軸為9.0396 Å、c軸長為10.7544 Å。SEM、TEM所觀察之NVP粒徑為100-200nm;NVPF為1-2μm。搭配BET比表面積與孔徑分析儀測得NVP比表面積為27 m2/g、孔洞大量分佈之直徑為4nm;NVPF比表面積為18 m2/g、孔洞大量分佈之直徑為4nm。化性方面,配合拉曼光譜測得Asp3/Asp2值,NVP為0.26、NVPF為0.35。TGA熱重分析測得NVP與NVPF之碳包覆量分別為,6.5wt%、6.8 wt%。
  本實驗之NVP於3.4V具有單一充放電平台,比容量為94 mAh/g (理論容量117.6 mAh/g),而NVPF則具有三充放電平台,分別為(A)3.35V/3.41V、(B)3.67V/3.71V、(C)4.22V/4.15V,其容量可達127.68mAh/g (理論容量為128 mAh/g),最後證實氟化後之NVPF有較好的電化學性能。


This study was focused on the synthesis and characterization of NVP and NVPF, and found the differences between them. In this study, ascorbic acid and citric acid were used as the mesoporous carbon-coated precursors of NVP and NVPF, respectively. The samples were synthesized by sol-gel method. X-ray diffraction with Topas software for crystal structure refinement, the lattice constant of NVP which a-axis was 8.7336 Å, c-axis was 21.8370 Å; the lattice constant of NVPF which a-axis was 9.0396 Å, c-axis was 10.7544 Å. SEM, TEM help us observe the NVP particle size which was 100-200nm; NVPF was 1-2μm. With the test of BET, the specific surface area of the NVP was 27 m2/g, the diameter of the pores was 4nm, the specific surface area of the NVPF was 18 m2/g, and the diameter of the pores was 4nm, respectively. The Asp3 / Asp2 values were measured with Raman spectroscopy, NVP was 0.26, and NVPF was 0.35. TGA showed that the carbon coating amounts of NVP and NVPF were 6.5 wt% and 6.8 wt%, respectively.
In this experiment, NVP has a single charge / discharge plateau at 3.4V with a specific capacity of 94 mAh/g (theoretical capacity of 117.6 mAh/g). And NVPF had three charge discharge plateaus, (A) 3.35V / 3.41V, (B) 3.67V / 3.71V, (C) 4.22V / 4.15V, the capacity was up to 127.68mAh/g (theoretical capacity of 128 mAh/g). Finally, confirmed that the NVPF have better electrochemical performance.

誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 引言 1 1.2 儲能技術發展現況 2 1.3 鈉離子電池發展概述 3 1.4 研究動機 3 第二章 文獻回顧 4 2.1 電池簡介 4 2.1.1 電化學電池原理 5 2.1.2 一次電池 6 2.1.3 二次電池 6 2.1.4 金屬離子電池 8 2.1.5 金屬離子電池工作原理 8 2.2 電解液 10 2.3 負極(陽極)材料 12 2.4 正極(陰極)材料結構 15 2.4.1 金屬氧化物層狀結構 15 2.4.2 金屬氧化物隧道結構 16 2.4.3 磷酸鹽類橄欖石結構 16 2.4.4 普魯士藍類結構 18 2.5 NASICON結構材料 20 2.6 Na3V2(PO4)2F3 32 2.7 研究動機 33 第三章 研究方法 34 3.1 鈉離子電池陰極材料製備 34 3.2 溶膠-凝膠法製備NVP與NVPF 34 3.3 漿料調製與電極片製備 36 3.4 製作鈕扣電池(Coin Cell) 36 3.5 電化學測試 38 3.5.1 倍率性能測試與循環壽命測試 38 3.5.2 循環伏安法測試 39 3.6 材料特性分析 40 3.6.1 X光晶體繞射分析(XRD) 40 3.6.2 掃描式電子顯微鏡(SEM) 41 3.6.3 穿透式電子顯微鏡(TEM) 41 3.6.4 比表面積與孔徑分析儀(BET)[51] 43 3.6.5 拉曼光譜分析(Raman Spectrum) 47 3.6.6 熱重分析儀(TGA) 48 3.6.7 X光電子能譜儀(XPS) 49 3.6.8 感應耦合電漿質譜分析儀(ICP-MS) 50 第四章 結果與討論 51 4.1 Na3V2(PO4)3 51 4.1.1 NVP之材料性質鑑定(結構) 51 4.1.2 NVP之材料化性分析 56 4.1.3 NVP電化學分析 62 4.2 Na3V2(PO4)2F3 68 4.2.1 NVPF之材料性質鑑定(結構) 68 4.2.2 NVPF之材料化性分析 73 4.2.3 NVPF之電化學分析 79 第五章 結論與未來展望 86 5.1 結論 86 5.2 未來展望 86 參考文獻 87

[1] DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, on the promotion of the use of energy from renewable sources, EUROPEAN COMMISSION, Brussels, 2-3, 2016.
[2] 可再生能源中長期發展規劃,中國國家發展和改革委員會,2007
[3] M. M. Hand, S. Baldwin, E. DeMeo, J. M. Reilly, T. Mai, D. Arent, G. Porro, M. Meshek, D. Sandor, Renewable Electricity Futures Study, National Renewable Energy Laboratory, 2012.
[4] 鍾佳雯,改變能源使用的儲能世界,台灣經濟部能源局,2016
[5] Alessandro Volta, Epistolario, Volume 5. Zanichelli, 29, 1955.
[6] 漢聲精選目擊者叢書「化學」,漢聲雜誌社,1996
[7] M. Winter, R.J. Brodd, “What Are Batteries, Fuel Cells, and Supercapacitors”, Chem. Rev., 2004, 104, 4245.
[8] D. Linden,“Handbook of Batteries”, McGraw-Hill Publishing company, New York ,1994.
[9] J. T. Kummer, N. Weber, 1968, US Patent 3:413–150.
[10] J. B. Goodenough, Rechargeable batteries: challenges old and new, J. Solid State Electrochem., 2012, 16, 2019.
[11] K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density, Materials Research Bulletin, 1980, 15, 783.
[12] Y. S. Meng, M. E. A. Dompablo, First principles computational materials design for energy storage materials in lithium ion batteries, Energy Environ. Sci., 2009, 2, 589.
[13] H. Xia, L. Lu, Y. S. Meng, G. Cederc, Phase Transitions and High-Voltage Electrochemical Behavior of LiCoO2 Thin Films Grown by Pulsed Laser Deposition, J. Electrochem. Soc., 2007, 154, A337.
[14] C. Delmas, J. J. Braconnier, C. Fouassier, P. Hagenmuller, Electrochemical intercalation of sodium in NaxCoO2 bronzes, Solid State Ionics, 1981, 3, 165.
[15] C. Delmas, P. Hagenmuller, C. Fouassier, Structural classification and properties of the layered oxides, Physica B&C, 1980 , 99 ,81.
[16] W. Mumme, The structure of Na4Mn4Ti5O18, Acta Crystallogr. B, 1968, 24, 1114.
[17] J. P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, P. Hagenmuller, New phases of formula NaxMnO2 (x less than or equal to 1), J. Solid StateChem., 1971, 3, 1.
[18] M. M. Doeff, Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymerbatteries, J. Electrochem. Soc., 1994, 141, L145.
[19] Y. Lu, L. Wang, J. Cheng, J. B. Goodenough., Prussian blue: a new framework of electrode materials for sodium batteries, Chem. Commun., 2012, 48, 6544.
[20] T. F. Hung, H. L. Chou, Y. W. Yeh, W. S. Chang, C. C. Yang, Combined Experimental and Computational Studies of a Na2Ni1-xCuxFe(CN)6 Cathode with Tunable Potential for Aqueous Rechargeable Sodium-Ion Batteries, Chem. Eur. J. 2015, 21, 15686.
[21] J. Shao, Y. Ding, X. Y. Li, Z. M. Wan, C. Y. Wu, J. P. Yang, Q. T. Qu, H. H. Zheng, Low crystallinity VOOH hollow microspheres as an outstanding high-rate and long-life cathode for sodium ion batteries, J. Mater. Chem. A, 2013, 1, 10130.
[22] H. K. Lee, Y. I. Kim, J. K. Park, J. W. Choi, Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries, Chem. Commun., 2012, 48, 8416.
[23] Y. You, X. L. Wu, Y. X. Yina, Y. G. Guo, High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries, Energy Environ. Sci., 2014, 7, 1643.
[24] P. Moreau, D. Guyomard, J. Gaubicher, F. Boucher, Structure and stability of sodium intercalated phases in olivine FePO4, Chem. Mater., 2010, 22, 4126.
[25] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, J. B. Goodenough, Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation, J. Electrochem. Soc., 1997, 144, 2581.
[26] H. L. Pan, Y. S. Hu, L. Q. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci., 2013, 6, 2338.
[27] B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, L. F. Nazar, A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries, Nat. Mater., 2007, 6, 749.
[28] Y. Kawabe, N. Yabuuchi, M. Kajiyama, N. Fukuhara, T. Inamasu, R. Okuyama, I. Nakai, S. Komaba, A comparison of crystal structures and electrode performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F synthesized by solid-state method for rechargeable Na-ion batteries, Electrochemistry, 2012, 80, 80.
[29] J. Barkerz, M. Y. Saidi, J. L. Swoyer, A sodium-ion cell based on the fluorophosphate compound NaVPO4F, Electrochem. Solid ST., 2003, 6, A1
[30] P. Serras, V. Palomares, A. goñi, T. Rojo, Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3-2x/C as cathode for sodium-ion batteries, J. Power Source, 2013, 241, 56.
[31] R. A. Shakoor, D. H. Seo, H. Kim, Y. U. Park, J. S. Kim, S. W. Kim, H. Gwon, S. Lee ,K. Kang, A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries, J. Mater. Chem., 2012, 22, 20535.
[32] M. M. Doeff, Y. Ma, S. J. Visco, L. C. De Jonghe, Electrochemical insertion of sodium into carbon, J. Electrochem. Soc., 1993, 140, L169.
[33] D. A. Stevens, J. R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries, J. Electrochem. Soc., 2000, 147, 1271.
[34] K. Gotoh, T. Ishikawa, S. Shimadzu, N. Yabuuchi, S. Komaba, K. Takeda, A. Goto, K. Deguchi, S. Ohki, K. Hashi, T. Shimizu, H. Ishida, NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J. Power Sources, 2013, 225, 137.
[35] 胡進,鋰離子電池納米結構負極材料儲鋰性能研究. 博士學位論文,中國科學院物理研究所,2005
[36] E. Ferg, R. J. Gummow, A. de Kock, M. M. Thackeray, Spinel anodes for lithium-ion batteries, J. Electrochem. Soc., 1994, 141, L147.
[37] J. Xu, C. Ma, M. Balasubramanian, Y. S. Meng, Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery, Chem. Commun., 2014, 50, 12564.
[38] J.-M. Le Meins, M.-P. Crosnier-Lopez, A. Hemon-Ribaud, G.Courbion, Phase Transitions in the Na3M2(PO4)2F3 Family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies, J. Solid State Chem., 1999, 148, 260.
[39] T. Jiang , G. Chen, A. Li, Y. Wei, Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries, Journal of Alloys and Compounds, 2009,478, 604.
[40] C. Wang, Q. Xu, H. Liu, Y. Wang, Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials, Adv. Energy Mater., 2015, 5, 1400982.
[41] K. Saravanan, C. W. Mason, A. Rudola, K. H. Wong, P. Balaya, The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, Adv. Energy Mater., 2012, 3, 444.
[42] Q. Liu, D. Wang, X. Yang, N. Chen, C. Wang, X. Bie, Y. Wei, G. Chen, F. Du, Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in mesoporous carbon matrix as the potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life, J. Mater. Chem. A, 2015, 3, 21478.
[43] H. Li, X. Yu, Y. Bai, F. Wu, C. Wu, L. Y. Liu, X. Q. Yang, Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries, J. Mater. Chem. A, 2015, 3, 9578.
[44] M. J. Aragón, P. Lavela, R. Alcántara, J. L. Tirado, Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries, Electrochim. Acta, 2015, 180, 824.
[45] W. Shen, H. Li, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries, J. Mater. Chem. A, 2015, 3, 15190.
[46] T. F. Hung, W. J. Cheng, W. S. Chang, C. C. Yang, C. C. Shen, Y. L. Kuo, Ascorbic Acid-Assisted Synthesis of Mesoporous Sodium Vanadium Phosphate Nanoparticles with Highly sp2-Coordinated Carbon Coatings as Efficient Cathode Materials for Rechargeable Sodium-Ion Batteries, Chem. Eur. J., 2016, 22, 10620.
[47] J. Fang, S. Wang, Z. Li, H. Chen, L. Xia, L. Ding, H. Wang, Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries, J. Mater. Chem. A, 2016, 4, 14669.
[48] R. F. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, Springer Science & Business Media, 2011, 202.
[49] J. B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory, Elsevier, 2006, 296.
[50] G. Zhou, D. W. Wang, F. Li, L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, H. M. Cheng, Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries, Chem. Mater., 2010, 22 , 5306.
[51] W. Wang, P. Liu, M. Zhang, J. Hu, F. Xing., The Pore Structure of Phosphoaluminate Cement, J. Comp. Mater., 2012, 2, 104.
[52] IUPAC, Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 578.
[53] NETZSCH Instrument, Product menu, 2016.
[54] 清華大學貴重儀器中心,感應耦合電漿質譜分析儀簡介,2016
[55] 清華大學貴重儀器中心,XPS光電子能譜儀簡介,2016
[56] 呂學隆,鋰電池電解液產業在兩岸的發展現況,工業材料雜誌,289,2011
[57] J. B. Goodenough , Y. Kim., Challenges for rechargeable Li batteries, Chem. Mater., 2010, 22, 587.
[58] S. Kajiyama, J. Kikkawa, J. Hoshino, M. Okubo, E. Hosono, Assembly of Na3V2(PO4)3 Nanoparticles Confined in a One-Dimensional Carbon Sheath for Enhanced Sodium-Ion Cathode Properties, Chem. Eur. J. 2014, 20, 12636.
[59] K. Saravanan, C. W. Mason, A. Rudola, K. H. Wong, P. Balaya, The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, Adv. Energy Mater. 2013, 3, 444.
[60] B. Huang, X. Zheng, M. Lu, S. Dong, Y. Qiao, Novel Spherical Li3V2(PO4)3/C Cathode Material for Application in High–Power Lithium Ion Battery, Int. J. Electrochem. Sci., 2012, 7, 437.
[61] M. J. Aragon, P. Lavela, G. F. Ortiz, J. L. Tirado, Effect of Iron Substitution in the Electrochemical Performance of Na3V2(PO4)3 as Cathode for Na-Ion Batteries, J. Electrochem. Soc., 2015, 162, A3077.
[62] M. J. Aragon, P. Lavela, R. Alcántara, J. L. Tirado, Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries, Electrochimica Acta, 2015, 180, 824.
[63] W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng, J. Chen, Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries, Mater. Chem. A, 2014, 2, 8668.
[64] G. Li, D. Jiang, H. Wang, Y. Jiang, Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries, J. Power Sources 2014, 265, 325.
[65] J.Liu, K. Tang, K. Song, PA van Aken, Y. Yu, J. Maier, Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries, Nanoscale, 2014, 6, 5081.
[66] W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang, J. Chen, M. Jing, F. Li, C. E. Banks, First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3, J. Mater. Chem. A, 2014, 2, 5358.
[67] Q. Zhu, X. Chang, N. Sun, H. Liu, R. Chen, F. Wu, B. Xu, Microorganism-moulded pomegranate-like Na3V2(PO4)3/C nanocomposite for advanced sodium-ion batteries, Electrochim. Acta, 2015, 155, 23.
[68] Z. Jian, L. Zhao, H. Pan, Y. S. Hu, H. Li, W. Chen, L. Chen, Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries, Electrochem. Commun. 2012, 14, 86.
[69] Z. Jian, W. Han, X. Lu, H. Yang, Y. S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries, Adv. Energy Mater., 2013, 3, 156.
[70] J. Kang, S. Baek, V. Mathew, J. Gim, J. Song, H. Park, E. Chae, A. K. Rai, J. Kim, High rate performance of a Na3V2(PO4)3 cathode prepared by pyro-synthesis for sodium-ion batteries, J. Mater. Chem., 2012, 22, 20857.
[71] S. Y. Lim, H. Kim, R. A. Shakoor, Y. Jung, J. W. Choi, Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study, J. Electrochem. Soc., 2012, 159, A1393.
[72] S. Kajiyama, J. Kikkawa, J. Hoshino, M. Okubo, E. Hosono, Assembly of Na3V2(PO4)3 Nanoparticles Confined in a One-Dimensional Carbon Sheath for Enhanced Sodium-Ion Cathode Properties, Chem. Eur. J. 2014, 20, 12636.
[73] J. Mao, C. Luo, T. Gao, X. Fana, C. Wang, Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries, J. Mater. Chem. A, 2015, 3, 10378.
[74] W. Song, X. Cao, Z. Wu, J. Chen, Y. Zhu, H. Hou, Q. Lan, X. Ji, Investigation of the Sodium Ion Pathway and Cathode Behavior in Na3V2(PO4)2F3 Combined via a First Principles Calculation, Langmuir, 2014, 30, 12438.
[75] Q. Liu, D. Wang, X. Yang, N. Chen, C. Wang, X. Bie, Y. Wei, G. Chen, F. Du, Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life, J. Mater. Chem. A, 2015, 3, 21478.
[76] A. R. Kumarasinghe, L. Samaranayake, F. Bondino, E. Magnano, N. Kottegoda, E. Carlino, U. N. Ratnayake, A. A. P. de Alwis, V. Karunaratne, G. A. J. Amaratunga, Self-Assembled Multilayer Graphene Oxide Membrane and Carbon Nanotubes Synthesized Using a Rare Form of Natural Graphite, J. Phys. Chem. C, 2013, 117, 9507.
[77] H. K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae, Y. H. Lee, Thermal Stability of Graphite Oxide., Chem. Phys. Lett., 2009, 470, 255.
[78] W. Yu, H. Xie, X. Wang, X. Wang, Highly Efficient Method for Preparing Homogenous and Stable Colloids Containing Graphene Oxide, Nanoscale Res. Lett., 2011, 6, 47.
[79] P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin, Synthesis of Graphene Nanosheets via Oxalic Acid-induced Chemical Reduction of Exfoliated Graphite Oxide, RSC Adv., 2012, 2, 1168.
[80] S. Stankovich, D. A. Dikin, R. D.Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, R. S. Ruoff, Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 2007, 45, 1558.
[81] W. Song, X. Cao, Z. Wu, J. Chen, Y. Zhu, H. Hou, Q. Lan, X. Ji, Investigation of the Sodium Ion Pathway and Cathode Behavior in Na3V2(PO4)2F3 Combined via a First Principles Calculation, Langmuir, 2014, 30, 12438.
[82] C.Masquelier, A.K.Padhi, K.S.Nanjundaswamy, J. B. Goodenough, New Cathode Materials for Rechargeable Lithium Batteries: The 3-D Framework Structures Li3Fe2(XO4)3 (X=P, As), J. Solid State Chem., 1998, 135, 228.
[83] W. Song, X. Ji, Z. Wu, Y. Yang, Z. Zhou, F. Li, Q. Chen, C. E. Banks, Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries, J. Power sources, 2014, 256, 258.
[84] J. Barker, R.K.B. Gower, P. Burns, A.J. Bryan, J. Electrochem. Soc., 2007, 154, A882.
[85] J.-M. Le Meins, M.-P. Grosnier-Lopez, A. Hemon-Ribaud, G. Courbion, J. Solid State Chem., 1999, 148, 260.
[86] T. Jiang, G. Chen, A.Li, C. Wang, Y. Wei, Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries, J. Alloy. Comp., 2009, 478, 604.
[87] Q. Liu, D. Wang, X. Yang, N. Chen, C. Wang, X. Bie,Y. Wei, G. Chen, F. Du, Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life, J. Mater. Chem. A, 2015, 3, 21478.
[88] M. Bianchini, N. Brisset, F. Fauth, F. Weill, E. Elkaim, E. Suard, C. Masquelier, L. Croguennec, Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study, Chem. Mater., 2014, 26, 4238.

無法下載圖示 全文公開日期 2023/02/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE