簡易檢索 / 詳目顯示

研究生: 施永光
Aris Budhiyanto
論文名稱: 基以監視攝影機作為 HDR 視覺感測器的教室照明和採光控制系統
Lighting and daylighting control system based on surveillance camera as an HDR vision sensor for classrooms
指導教授: 邱韻祥
Yun-Shang Chiou
口試委員: 鄭政利
Cheng-Li Cheng
詹瀅潔
Ying-Chieh Chan
王元凱
Yuan-Kai Wang
陳建宇
Chien-Yu Chen
邱韻祥
Yun-Shang Chiou
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 109
中文關鍵詞: 照明採光照明控制系統HDR 視覺感測器視覺舒適度教室
外文關鍵詞: lighting, daylighting, lighting control system, HDR vision sensor, visual comfort, classroom
相關次數: 點閱:133下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

教室的照明在影響學生的表現、生產力和整體建築能耗方面發揮著至關重要的作用。各種研究強調了教育環境中照明不理想的普遍問題,近一半的學生表示感到不適。這凸顯了改善教育設施照明環境的必要性。
傳統照明控制系統 (LCS) 可以解決次優照明不理想問題,但在感測器數量和適應不同學習環境方面有其限制。本研究引入了 HSLDCS(HDRi 監控照明和日光控制系統)來改善教室照明並支援各種學習活動。它以商用監視器作為 HDR 感測器取代了傳統的 LCS。驗證實驗包括 LabVIEW 工具和 IP 攝影機精度測試。 HSLDCS 在縮尺原型和全尺寸教室中進行了測試,以評估學生的舒適度和節能情況。
研究結果表明,實施 HSLDCS 有望改善照明不理想状態、提高能源效率和增強使用者福祉。該系統利用精度範圍為 5-23% 的商用 IP 攝影機作為 HDR 視覺感測器,在原型和實際課堂實施中顯示節能約 43-63%,超過 70% 的學生表示滿意。


The lighting in classrooms plays a crucial role in influencing students' performance, productivity, and overall building energy consumption. Various studies underscore the widespread issue of suboptimal lighting in educational settings, with nearly half of students reporting discomfort. This underscores the imperative to improve lighting environments in educational facilities.
Conventional Lighting Control Systems (LCS) solve suboptimal lighting issues but have limitations with sensor numbers and adapting to diverse learning contexts. This study introduces HSLDCS (HDRi Surveillance Lighting and Daylighting Control System) to improve lighting in classrooms and support varied learning activities. It replaces traditional LCS with a commercial surveillance camera as an HDR sensor. Validation experiments included LabVIEW tools and IP camera accuracy tests. HSLDCS was tested in a prototype and a full-scale classroom to assess student comfort and energy savings.
The research findings suggest that implementing HSLDCS holds promise in addressing suboptimal lighting conditions, improving energy efficiency, and enhancing user well-being. Utilizing a commercial IP camera with an error range of 5-23% as the HDR vision sensor, the system demonstrated energy savings of approximately 43-63% in both prototype and real classroom implementations, with over 70% of students expressing satisfaction.

Abstract I Acknowledgments IV Contents V List of Tables VII List of Figures VIII Nomenclature X Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Objective and contribution 3 1.3 Structure 3 1.4 List of publication 4 Chapter 2 Literature Review 5 2.1 Daylighting and visual comfort in the classroom 5 2.2 Daylight harvesting control and lighting control system 9 2.3 High Dynamic Range Images (HDRis) method 15 2.4 Lab VIEW and Arduino microcontroller 19 Chapter 3 Verification of an HDRi Surveillance Lighting and Daylight Control System 22 3.1 Research scope and objective 22 3.2 Verification of lighting and daylighting control system with LabVIEW 22 3.2.1 Experimental setting 22 3.2.2 Control algorithm 24 3.2.3 Experiment result and discussion 25 3.3 Verification of surveillance camera as vision sensor 27 3.3.1 Experimental setting 28 3.3.2 Experiment result and discussion 31 3.4 Chapter conclusion 33 Chapter 4 Prototyping an HDRi Surveillance Lighting and Daylighting Control System 34 4.1 Research scope and objective 34 4.2 Experimental setting 34 4.2.1 Model prototype 34 4.2.2 Classroom schemes 37 4.3 Result and discussion 45 4.3.1 Illuminance environmental monitoring 45 4.3.2 Energy consumption monitoring 54 4.4 Chapter conclusion 55 Chapter 5 Visual Comfort and Energy Saving in Classrooms with HDRi Surveillance Lighting and Daylighting Control System 56 5.1 Research scope and objective 56 5.2 Experimental setting 56 5.2.1 Classroom setting 56 5.2.2 Control rule 60 5.2.3 Field measurements 72 5.2.4 Questionnaire survey 73 5.3 Result 73 5.3.1 Illuminance environmental analysis 73 5.3.2 Energy saving analysis 81 5.3.3 Questionnaire analysis 82 5.4 Discussion and chapter conclusion 88 Chapter 6 Conclusion and Future Study 90 6.1 Conclusion and findings 90 6.2 Limitation 91 6.3 Future study 91 References 93 Appendix A Visual comfort assessment questionnaire 100 Appendix B Code for exposure settings of the IP camera 103 Appendix C code for generating HDRi from the IP camera 104 Appendix D Arduino Uno used as DMX and motor servo controller 108

[1] Y.Wang, W.Yang, Q.Wang, Multi-objective parametric optimization of the composite external shading for the classroom based on lighting, energy consumption, and visual comfort, Energy Build. 275 (2022) 112441. https://doi.org/10.1016/j.enbuild.2022.112441.
[2] Y.Fang, X.Luo, J.Lu, A review of research on the impact of the classroom physical environment on schoolchildren’s health, J. Build. Eng. 65 (2023) 105430. https://doi.org/10.1016/j.jobe.2022.105430.
[3] M.Winterbottom, A.Wilkins, Lighting and discomfort in the classroom, J. Environ. Psychol. 29 (2009) 63–75. https://doi.org/10.1016/j.jenvp.2008.11.007.
[4] Y.S.Chiou, S.Saputro, D.P.Sari, Visual comfort in modern university classrooms, Sustain. 12 (2020) 3930. https://doi.org/10.3390/su12093930.
[5] S.Abdelwahab, H.Sobh, Visual Discomfort Analysis as a Tool to Support Facade Shading Design: A Case Study in the Architectural Design Studio, J. Arch. Eng. 28 (2022) 05022003. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000533.
[6] Z.Kong, J.A.Jakubiec, Instantaneous lighting quality within higher educational classrooms in Singapore, Front. Archit. Res. 10 (2021) 787–802. https://doi.org/10.1016/j.foar.2021.05.001.
[7] Z.Kong, R.Zhang, J.Ni, P.Ning, X.Kong, J.Wang, Towards an integration of visual comfort and lighting impression: A field study within higher educational buildings, Build. Environ. 216 (2022) 108989. https://doi.org/10.1016/j.buildenv.2022.108989.
[8] J.Mogas, R.Palau, Classroom lighting and its effect on student learning and performance: Towards smarter conditions, Smart Innov. Syst. Technol. 197 (2021) 3–12. https://doi.org/10.1007/978-981-15-7383-5_1.
[9] B.Sun, Q.Zhang, S.Cao, Development and Implementation of a Self-Optimizable Smart Lighting System Based on Learning Context in Classroom, Int. J. Environ. Res. Public Health 17 (2020) 1217. https://doi.org/10.3390/ijerph17041217.
[10] K.R.Wagiman, M.N.Abdullah, M.Y.Hassan, N.H.Mohammad Radzi, A.H.Abu Bakar, T.C.Kwang, Lighting system control techniques in commercial buildings: Current trends and future directions, J. Build. Eng. 31 (2020) 101342. https://doi.org/10.1016/j.jobe.2020.101342.
[11] N.Gentile, M.C.Dubois, T.Laike, Daylight harvesting control systems: Design recommendations based on a literature review, in: 2015 IEEE 15th Int. Conf. Environ. Electr. Eng. EEEIC 2015 - Conf. Proc., 2015: pp. 632–637. https://doi.org/10.1109/EEEIC.2015.7165237.
[12] S.M.H.Anik, X.Gao, N.Meng, P.R.Agee, A.P.McCoy, A cost-effective, scalable, and portable IoT data infrastructure for indoor environment sensing, J. Build. Eng. 49 (2022) 104027. https://doi.org/10.1016/j.jobe.2022.104027.
[13] M.Karami, G.V.McMorrow, L.Wang, Continuous monitoring of indoor environmental quality using an Arduino-based data acquisition system, J. Build. Eng. 19 (2018) 412–419. https://doi.org/10.1016/j.jobe.2018.05.014.
[14] K.K.Y.Hui, S.C.M. and Cheng, Analysis of Effective Lighting Systems for University Classrooms, in: Proc. Henan-Hong Kong Jt. Symp. 2008, 2008: pp. 53–64. https://www.researchgate.net/publication/281903206.
[15] I.Konstantzos, S.A.Sadeghi, M.Kim, J.Xiong, A.Tzempelikos, The effect of lighting environment on task performance in buildings – A review, Energy Build. 226 (2020) 110394. https://doi.org/10.1016/j.enbuild.2020.110394.
[16] H.S.Lee, S.Y.Kwon, J.H.Lim, A Development of a Lighting Control System Based on Context-Awareness for the Improvement of Learning Efficiency in Classroom, Wirel. Pers. Commun. 86 (2016) 165–181. https://doi.org/10.1007/s11277-015-2811-6.
[17] K.Karyono, B.Abdullah, A.Cotgrave, A.Bras, A novel adaptive lighting system which considers behavioral adaptation aspects for visually impaired people, Buildings 10 (2020) 168. https://doi.org/10.3390/buildings10090168.
[18] Z.Cheng, Q.Zhao, F.Wang, Y.Jiang, L.Xia, J.Ding, Satisfaction based Q-learning for integrated lighting and blind control, Energy Build. 127 (2016) 43–55. https://doi.org/10.1016/j.enbuild.2016.05.067.
[19] E.Shen, J.Hu, M.Patel, Energy and visual comfort analysis of lighting and daylight control strategies, Build. Environ. 78 (2014) 155–170. https://doi.org/10.1016/j.buildenv.2014.04.028.
[20] J.Luansheng, L.Chunxia, G.Xiumei, M.Chongxiao, The Design of Intelligent Lighting System in College Classroom, Energy Procedia 17 (2012) 90–95. https://doi.org/10.1016/j.egypro.2012.02.068.
[21] L.Martirano, A sample case of an advanced lighting system in a educational building, 2014 14th Int. Conf. Environ. Electr. Eng. EEEIC 2014 - Conf. Proc. (2014) 46–51. https://doi.org/10.1109/EEEIC.2014.6835834.
[22] F.Motazedian, M.Mahdavinejad, F.Habib, D.Diba, Classroom Lighting Control Systems and Level of Energy Consumption, Tehran, Iran, Int. J. Archit. Urban Dev. 6 (2016) 35–42. https://doi.org/20.1001.1.22287396.2016.6.2.4.3.
[23] T.deRubeis, M.Muttillo, L.Pantoli, I.Nardi, I.Leone, V.Stornelli, D.Ambrosini, A first approach to universal daylight and occupancy control system for any lamps: Simulated case in an academic classroom, Energy Build. 152 (2017) 24–39. https://doi.org/10.1016/j.enbuild.2017.07.025.
[24] I.P.E.Widya Pratama, T.Soehartanto, D.D.Ari Wibowo, N.A.Tjandra, M.Nizar, Automated lighting design in the classroom, Bull. Electr. Eng. Informatics 13 (2024) 160–166. https://doi.org/10.11591/eei.v13i1.6384.
[25] F.Shi, Z.Kou, J.Chen, W.Li, Design and Application of Intelligent Lighting Control System for Classrooms Based on PLC, Proc. 2020 IEEE 5th Inf. Technol. Mechatronics Eng. Conf. ITOEC 2020 (2020) 1268–1271. https://doi.org/10.1109/ITOEC49072.2020.9141695.
[26] S.Suresh, H.N.S.Anusha, T.Rajath, P.Soundarya, S.V.P.Vudatha, Automatic lighting and Control System for Classroom, Proc. 2016 Int. Conf. ICT Business, Ind. Gov. ICTBIG 2016 (2017) 1–6. https://doi.org/10.1109/ICTBIG.2016.7892666.
[27] R.Delvaeye, W.Ryckaert, L.Stroobant, P.Hanselaer, R.Klein, H.Breesch, Analysis of energy savings of three daylight control systems in a school building by means of monitoring, Energy Build. 127 (2016) 969–979. https://doi.org/10.1016/j.enbuild.2016.06.033.
[28] T.K.Yong, K.T.Malingam, M.A.M.Arfin, K.H.Yusof, F.Aman, N.M.Sapari, Development of Classroom Used Arduino Lighting System for Classroom Used, Borneo Eng. Adv. Multidiscip. J. 1 (2022) 6–10.
[29] A.Budhiyanto, Y.S.Chiou, Prototyping a Lighting Control System Using LabVIEW with Real-Time High Dynamic Range Images (HDRis) as the Luminance Sensor, Buildings 12 (2022) 650. https://doi.org/10.3390/buildings12050650.
[30] L.T.Doulos, A.Kontadakis, E.N.Madias, M.Sinou, A.Tsangrassoulis, Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems, Energy Build. 194 (2019) 201–217. https://doi.org/10.1016/j.enbuild.2019.04.033.
[31] A.Silitonga, I.G.L.W.Indrawan, Blind and lighting control to maintain comfort light intensity of the classroom utilizing Microcontroller ATmega8535, in: Proc. - 2013 Int. Conf. Inf. Technol. Electr. Eng. "Intelligent Green Technol. Sustain. Dev. ICITEE 2013, IEEE, 2013: pp. 438–443. https://doi.org/10.1109/ICITEED.2013.6676282.
[32] Christoph Reinhart, Daylighting Handbook I Fundamentals Designing with the Sun, Building Technology Press, Cambridge, 2014.
[33] M.Rahmat, M.Modaresnezhad, M.Nezhad, Literature Review : Impacts of Workstation Partition Layout on Daylight Sufficiency and Daylight Excessiveness in Open Plan Offices, in: Environ. Des. Res. Assoc. Annu. Conf., Raleigh, 2016.
[34] Lighting Controls Association, Daylight Zones: Toplighted Spaces, (2011).
[35] C.Tzouvaras, A.Dimara, A.Papaioannou, C.N.Anagnostopoulos, S.Krinidis, K.Arvanitis, D.Ioannidis, D.Tzovaras, A Novel Dynamic Approach for Determining Real-Time Interior Visual Comfort Exploiting Machine Learning Techniques, Appl. Sci. 13 (2023). https://doi.org/10.3390/app13126975.
[36] I.E.S., The IESNA Lighting Handbook: Reference & Application, Illuminating Engineering Society of North America, New York, 2000.
[37] P.R.Boyce, Human factors in lighting, Third edit, CRC Press, 2014.
[38] K.Chaloeytoy, M.Ichinose, S.C.Chien, Determination of the simplified daylight glare probability (DGPs) criteria for daylit office spaces in Thailand, Buildings 10 (2020) 1–20. https://doi.org/10.3390/buildings10100180.
[39] L.Olivieri, E.Caamaño-Martín, F.J.Moralejo-Vázquez, N.Martín-Chivelet, F.Olivieri, F.J.Neila-Gonzalez, Energy saving potential of semi-transparent photovoltaic elements for building integration, Energy 76 (2014) 572–583. https://doi.org/10.1016/j.energy.2014.08.054.
[40] A.Motamed, Integrated Daylighting and Artificial Lighting Control based on High Dynamic Range Vision Sensors, Swiss Federal Institute of Technology Lausanne, 2017.
[41] J.Y.Suk, Luminance and vertical eye illuminance thresholds for occupants’ visual comfort in daylit office environments, Build. Environ. 148 (2019) 107–115. https://doi.org/10.1016/j.buildenv.2018.10.058.
[42] A.Borisuit, J.L.Scartezzini, A.Thanachareonkit, Visual discomfort and glare rating assessment of integrated daylighting and electric lighting systems using HDR imaging techniques, Archit. Sci. Rev. 53 (2010) 359–373. https://doi.org/10.3763/asre.2009.0094.
[43] J.Y.Suk, M.Schiler, K.Kensek, Investigation of existing discomfort glare indices using human subject study data, Build. Environ. 113 (2017) 121–130. https://doi.org/10.1016/j.buildenv.2016.09.018.
[44] A.E.Nieto-Vallejo, J.E.Camacho, R.Cuervo-Pulido, E.Hernandez-Mihajlovic, Dynamic Lighting System to Increase the Attention of Design Students in the Classroom, Rev. Fac. Ing. 30 (2021) e12233. https://doi.org/10.19053/01211129.v30.n55.2021.12233.
[45] A.A.Y.Freewan, J.A.AlDalala, Assessment of daylight performance of Advanced Daylighting Strategies in Large University Classrooms; Case Study Classrooms at JUST, Alexandria Eng. J. 59 (2020) 791–802. https://doi.org/10.1016/j.aej.2019.12.049.
[46] C.deBakker, M.Aarts, H.Kort, A.Rosemann, The feasibility of highly granular lighting control in open-plan offices: Exploring the comfort and energy saving potential, Build. Environ. 142 (2018) 427–438. https://doi.org/10.1016/j.buildenv.2018.06.043.
[47] British Standards Institution, BS EN 12464-1:2011 : BSI Standards Publication Light and lighting — Lighting of work places Part 1 : Indoor work places, 2021.
[48] M.A.U.Haq, M.Y.Hassan, H.Abdullah, H.A.Rahman, M.P.Abdullah, F.Hussin, D.M.Said, A review on lighting control technologies in commercial buildings, their performance and affecting factors, Renew. Sustain. Energy Rev. 33 (2014) 268–279. https://doi.org/10.1016/j.rser.2014.01.090.
[49] C.DiLouie, Lighting Controls Handbook, 2020. https://doi.org/10.1201/9781003151401.
[50] R.P.Vathanam, Gnana Swathika Odiyur, Karthikeyan Kalyanasundaram, Rajvikram Madurai Elavarasan, Shabir Hussain Khahro, Umashankar Subramaniam, M.Ramesh, R.M.Gopalakrishnan, A Review on Effective Use of Daylight Harvesting Using Intelligent Lighting Control Systems for Sustainable Office Buildings in India, Sustainability 13 (2021) 4973. https://doi.org/10.3390/su13094973.
[51] I.L.Wong, A review of daylighting design and implementation in buildings, Renew. Sustain. Energy Rev. 74 (2017) 959–968. https://doi.org/10.1016/j.rser.2017.03.061.
[52] S.Mukherjee, D.Birru, D.Cavalcanti, E.Shen, M.Patel, Y.-J.Wen, S.Das, Closed Loop Integrated Lighting and Daylighting Control for Low Energy Buildings, 2010 ACEEE Summer Study Energy Effic. Build. (2010) 9–252.
[53] A.Galatioto, M.Beccali, Aspects and issues of daylighting assessment: A review study, Renew. Sustain. Energy Rev. 66 (2016) 852–860. https://doi.org/10.1016/j.rser.2016.08.018.
[54] S.Subramaniam, Multi-Zone Control of Daylight-Responsive Lighting Control Systems, The Pennsylvania State University, 2013. https://etda.libraries.psu.edu/paper/19990/.
[55] C.Carrillo, E.Diaz-Dorado, J.Cidrás, A.Bouza-Pregal, P.Falcón, A.Fernández, A.Álvarez-Sánchez, Lighting control system based on digital camera for energy saving in shop windows, Energy Build. 59 (2013) 143–151. https://doi.org/10.1016/j.enbuild.2012.12.012.
[56] M.Frascarolo, S.Martorelli, V.Vitale, An innovative lighting system for residential application that optimizes visual comfort and conserves energy for different user needs, Energy Build. 83 (2014) 217–224. https://doi.org/10.1016/j.enbuild.2014.03.072.
[57] M.Rossi, A.Pandharipande, D.Caicedo, L.Schenato, A.Cenedese, Personal lighting control with occupancy and daylight adaptation, Energy Build. 105 (2015) 263–272. https://doi.org/10.1016/j.enbuild.2015.07.059.
[58] J.Xiong, A.Tzempelikos, Model-based shading and lighting controls considering visual comfort and energy use, Sol. Energy 134 (2016) 416–428. https://doi.org/10.1016/j.solener.2016.04.026.
[59] M.Despenic, S.Chraibi, T.Lashina, A.Rosemann, Lighting preference profiles of users in an open office environment, Build. Environ. 116 (2017) 89–107. https://doi.org/10.1016/j.buildenv.2017.01.033.
[60] A.Motamed, L.Deschamps, J.L.Scartezzini, On-site monitoring and subjective comfort assessment of a sun shadings and electric lighting controller based on novel High Dynamic Range vision sensors, Energy Build. 149 (2017) 58–72. https://doi.org/10.1016/j.enbuild.2017.05.017.
[61] L.Xu, Y.Pan, Y.Yao, D.Cai, Z.Huang, N.Linder, Lighting energy efficiency in offices under different control strategies, Energy Build. 138 (2017) 127–139. https://doi.org/10.1016/j.enbuild.2016.12.006.
[62] Y.Cheng, C.Fang, J.Yuan, L.Zhu, Design and application of a smart lighting system based on distributed wireless sensor networks, Appl. Sci. 10 (2020) 1–21. https://doi.org/10.3390/app10238545.
[63] G.Chiesa, D.DiVita, A.Ghadirzadeh, A.H.Muñoz Herrera, J.C.Leon Rodriguez, A fuzzy-logic IoT lighting and shading control system for smart buildings, Autom. Constr. 120 (2020) 103397. https://doi.org/10.1016/j.autcon.2020.103397.
[64] F.Sun, J.Yu, Indoor intelligent lighting control method based on distributed multi-agent framework, Optik (Stuttg). 213 (2020) 164816. https://doi.org/10.1016/j.ijleo.2020.164816.
[65] M.Á.Campano, I.Acosta, S.Domínguez, R.López-Lovillo, Dynamic analysis of office lighting smart controls management based on user requirements, Autom. Constr. 133 (2022). https://doi.org/10.1016/j.autcon.2021.104021.
[66] E.Reinhard, H.Wolfgang, P.Debevec, S.Pattanaik, G.Ward, K.Myszkowski, High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, 2nd Edition, 2nd ed., Morgan Kaufmann, 2010.
[67] F.Banterle, A.Artusi, K.Debattista, A.Chalmers, Advanced High Dynamic Range Imaging, 2nd ed., CRC Press, New York, 2018.
[68] V.Kumaragurubaran, M.Inanici, Hdrscope: High dynamic range image processing toolkit for lighting simulations and analysis, Proc. BS 2013 13th Conf. Int. Build. Perform. Simul. Assoc. (2013) 3400–3407.
[69] M.N.Inanici, Evaluation of high dynamic range photography as a luminance data acquisition system, Light. Res. Technol. 38 (2006) 123–136. https://doi.org/10.1191/1365782806li164oa.
[70] E.Tural, M.Tural, Luminance contrast analyses for low vision in a senior living facility: A proposal for an HDR image-based analysis tool, Build. Environ. 81 (2014) 20–28. https://doi.org/10.1016/j.buildenv.2014.06.005.
[71] A.Motamed, L.Deschamps, J.L.Scartezzini, Eight-month experimental study of energy impact of integrated control of sun shading and lighting system based on HDR vision sensor, Energy Build. 203 (2019) 1–22. https://doi.org/10.1016/j.enbuild.2019.109443.
[72] C.Pierson, C.Cauwerts, M.Bodart, J.Wienold, Tutorial: Luminance Maps for Daylighting Studies from High Dynamic Range Photography, LEUKOS - J. Illum. Eng. Soc. North Am. 17 (2021) 140–169. https://doi.org/10.1080/15502724.2019.1684319.
[73] M.Inanici, Evalution of high dynamic range image-based sky models in lighting simulation, LEUKOS - J. Illum. Eng. Soc. North Am. 7 (2010) 69–84. https://doi.org/10.1582/LEUKOS.2010.07.02001.
[74] P.Au, M.Donn, HDR luminance measurement: comparing real and simulated data, 46th Annu. Conf. Archit. Sci. Assoc. (2010) 1–8. http://anzasca.net/2012papers/.
[75] M.B.Hirning, G.L.Isoardi, S.Coyne, V.R.Garcia Hansen, I.Cowling, Post occupancy evaluations relating to discomfort glare: A study of green buildings in Brisbane, Build. Environ. 59 (2013) 349–357. https://doi.org/10.1016/j.buildenv.2012.08.032.
[76] Z.Kong, M.Utzinger, L.Liu, Solving glare problems in architecture through integration of hdr image technique and modeling with diva, 14th Int. Conf. IBPSA - Build. Simul. 2015, BS 2015, Conf. Proc. (2015) 1213–1220. https://doi.org/10.26868/25222708.2015.2429.
[77] V.Zaikina, B.S.Matusiak, Verification of the Accuracy of the Luminance-Based Metrics of Contour, Shape, and Detail Distinctness of 3D Object in Simulated Daylit Scene by Numerical Comparison with Photographed HDR Images, LEUKOS - J. Illum. Eng. Soc. North Am. 13 (2017) 177–188. https://doi.org/10.1080/15502724.2016.1219269.
[78] S.Safranek, R.G.Davis, Sources of Error in HDRI for Luminance Measurement: A Review of the Literature, LEUKOS - J. Illum. Eng. Soc. North Am. 17 (2020) 187–208. https://doi.org/10.1080/15502724.2020.1721018.
[79] M.Kim, I.Konstantzos, A.Tzempelikos, Real-time daylight glare control using a low-cost, window-mounted HDRI sensor, Build. Environ. 177 (2020) 106912. https://doi.org/10.1016/j.buildenv.2020.106912.
[80] L.Bellia, A.Cesarano, G.F.Iuliano, G.Spada, HDR luminance mapping analysis system for visual comfort evaluation, 2009 IEEE Intrumentation Meas. Technol. Conf. I2MTC 2009 (2009) 962–967. https://doi.org/10.1109/IMTC.2009.5168590.
[81] T.Kruisselbrink, M.Aries, A.Rosemann, A Practical Device for Measuring the Luminance Distribution, Int. J. Sustain. Light. 36 (2017) 75–90. https://doi.org/10.26607/ijsl.v19i1.76.
[82] N.Chinomi, M.Leelajindakrairerk, S.Boontaklang, C.Chompoo-Inwai, Design and Implementation of a smart monitoring system of a modern renewable energy micro-grid system using a low-cost data acquisition system and LabVIEW TM program , J. Int. Counc. Electr. Eng. 7 (2017) 142–152. https://doi.org/10.1080/22348972.2017.1345226.
[83] B.Hamed, Design & Implementation of Smart House Control Using LabVIEW, Int. J. Soft Comput. Eng. 1 (2012) 98–106.
[84] Benefits of Programming Graphically in NI LabVIEW, (2013) 1–5. http://www.technologyreview.com/sites/default/files/legacy/benefits_of_programming_graphically_with_lv.pdf (accessed January10, 2022).
[85] T.Tasner, D.Lovrec, F.Tasner, J.Edler, Comparison of LabVIEW and MATLAB for scientific research, Ann. Fac. Eng. Hunedoara - Internatioanl J. Eng. 3 (2012) 389–394.
[86] M.A.Muqeet, Design of Low-Cost DAQ System Using Arduino Board and LabVIEW LINX Firmware, J. Xidian Univ. 14 (2020) 55–63. https://doi.org/10.37896/jxu14.4/008.
[87] G.Porzio, LabView and Connections with Third-Party Hardware, in: LabVIEW - A Flex. Environ. Model. Dly. Lab. Use, IntechOpen, 2021. https://doi.org/doi: 10.5772/intechopen.96056.
[88] T.Q.Duc, LabVIEW and Open Embedded System, in: LabVIEW - A Flex. Environ. Model. Dly. Lab. Use, IntechOpen, 2021. https://doi.org/doi: 10.5772/intechopen.98271.
[89] N.Kanani, M.Thakker, Low Cost Data Acquisition System Using LABVIEW, in: 2nd Int. Conf. Multidiscip. Res. Pract., 2015: pp. 67–70.
[90] N.Zlatanov, Arduino and Open Source Computer Hardware and Software, (2016). https://doi.org/10.13140/RG.2.1.1071.7849.
[91] S.Sivaranjani, S.Velmurugan, K.Kathiresan, M.Karthik, B.Gunapriya, C.Gokul, M.Suresh, Visualization of virtual environment through labVIEW platform, Mater. Today Proc. 45 (2021) 2306–2312. https://doi.org/10.1016/j.matpr.2020.10.559.
[92] A.Eltaweel, Y.Su, M.Hafez, W.Eltaweel, An automated louver with innovative parametrically-angled reflective slats: Prototyping and validation via using parametric control in Grasshopper along with Arduino board, Energy Build. 231 (2021) 110614. https://doi.org/10.1016/j.enbuild.2020.110614.
[93] Z.Mallasi, Using parametric BIM integration for prototyping future responsive facades, J. Facade Des. Eng. 6 (2018) 89–100. https://doi.org/10.7480/jfde.2018.1.1865.
[94] C.Yin, X.Huang, S.Dadras, Y.H.Cheng, J.Cao, H.Malek, J.Mei, Design of optimal lighting control strategy based on multi-variable fractional-order extremum seeking method, Inf. Sci. (Ny). 465 (2018) 38–60. https://doi.org/10.1016/j.ins.2018.06.059.
[95] S.Angalaeswari, T.Deepa, D.Subbulekshmi, S.Krithiga, M.N.Reddy, K.Siddartha, C.Chaitanya, Smart house control using LabVIEW, J. Phys. Conf. Ser. 1716 (2021). https://doi.org/10.1088/1742-6596/1716/1/012004.
[96] A.Kumar, P.Kar, R.Warrier, A.Kajale, S.K.Panda, Implementation of Smart LED Lighting and Efficient Data Management System for Buildings, Energy Procedia 143 (2017) 173–178. https://doi.org/10.1016/j.egypro.2017.12.667.
[97] M.Bogdan, Light Intensity Control Using Arduino Uno and Lab VIEW, in: 13th Int. Conf. Virtual Learn., 2018: pp. 306–310.
[98] Q.Lin, Y.Zhang, A.VanMieghem, Y.C.Chen, N.Yu, Y.Yang, H.Yin, Design and experiment of a sun-powered smart building envelope with automatic control, Energy Build. 223 (2020) 110173. https://doi.org/10.1016/j.enbuild.2020.110173.
[99] S.Kumar, Ubiquitous Smart Home System Using Android Application, Int. J. Comput. Networks Commun. 6 (2014) 33–43. https://doi.org/10.5121/ijcnc.2014.6103.
[100] S.Kumar, S.R.Lee, Android based smart home system with control via Bluetooth and internet connectivity, Proc. Int. Symp. Consum. Electron. ISCE (2014). https://doi.org/10.1109/ISCE.2014.6884302.
[101] O.A.Olamide, Y.N.Asafe, O.I.Olawale, A.O.Akinleye, Networking CCTV Cameras & Passive Infra-Red Sensors for E-classroom Monitoring System : Proactive Approach to Quality Assurance in Education System, Int. J. Adv. Netw. Appl. 8 (2017) 3213–3219.
[102] F.O.Okorodudu, Moving towards motion activated security camera system with live feed and call routing, Niger. J. Sci. Environ. 19 (2021).
[103] S.Chraibi, P.Creemers, C.Rosenkötter, E.J.vanLoenen, M.B.C.Aries, A.L.P.Rosemann, Dimming strategies for open office lighting: User experience and acceptance, Light. Res. Technol. 51 (2019) 513–529. https://doi.org/10.1177/1477153518772154.
[104] T.H.Yu, S.Y.Kwon, K.M.Im, J.H.Lim, An RTP-based dimming control system for visual comfort enhancement and energy optimization, Energy Build. 144 (2017) 433–444. https://doi.org/10.1016/j.enbuild.2016.04.045.
[105] K.Tsatsakis, A.Papanikolaou, C.Malavazos, Visual Comfort and Energy Efficiency for User Centric Lighting Control, 5th Int. Conf. “Energy Build. 2016” (2016) 1–9.
[106] C.Goovaerts, F.Descamps, V.A.Jacobs, Shading control strategy to avoid visual discomfort by using a low-cost camera: A field study of two cases, Build. Environ. 125 (2017) 26–38. https://doi.org/10.1016/j.buildenv.2017.08.030.
[107] J.Uttley, S.Fotios, C.Cheal, Satisfaction and illuminances set with user-controlled lighting, Archit. Sci. Rev. 56 (2013) 306–314. https://doi.org/10.1080/00038628.2012.724380.
[108] S.Olbina, J.Hu, Daylighting and thermal performance of automated split-controlled blinds, Build. Environ. 56 (2012) 127–138. https://doi.org/10.1016/j.buildenv.2012.03.002.
[109] M.Alsukkar, M.Hu, A.Eltaweel, Y.Su, Daylighting performance improvements using of split louver with parametrically incremental slat angle control, Energy Build. 274 (2022) 112444. https://doi.org/10.1016/j.enbuild.2022.112444.
[110] I.E.S., Approved method: IES spatial daylight autonomy (sDA) and annual sunlight exposure (ASE), Illuminating Engineering Society, New York, 2019.
[111] F.Leccese, G.Salvadori, M.Rocca, Visual discomfort among university students who use CAD workstations, Work 55 (2016) 171–180. https://doi.org/10.3233/WOR-162370.
[112] N.T.Al-Ashwal, A.S.Hassan, The integration of daylighting with artificial lighting to enhance building energy performance, AIP Conf. Proc. 1892 (2017). https://doi.org/10.1063/1.5005777.
[113] L.Bellia, F.Fragliasso, E.Stefanizzi, Daylit offices: A comparison between measured parameters assessing light quality and users’ opinions, Build. Environ. 113 (2017) 92–106. https://doi.org/10.1016/j.buildenv.2016.08.014.
[114] J.K.Day, B.Futrell, R.Cox, S.N.Ruiz, Blinded by the light: Occupant perceptions and visual comfort assessments of three dynamic daylight control systems and shading strategies, Build. Environ. 154 (2019) 107–121. https://doi.org/10.1016/j.buildenv.2019.02.037.
[115] D.Plörer, S.Hammes, M.Hauer, V.VanKarsbergen, R.Pfluger, Control strategies for daylight and artificial lighting in office buildings-a bibliometrically assisted review, Energies 14 (2021) 1–18. https://doi.org/10.3390/en14133852.

QR CODE