簡易檢索 / 詳目顯示

研究生: 王蓁華
Chen-hua Wang
論文名稱: 使用相位對比磁振影像分析肺動高壓患者的血液動力學特性
Analysis of Hemodynamic Features using PC-MRI Measurements for Pulmonary Arterial Hypertension Patients
指導教授: 陳明志
Ming-jyh Chern
口試委員: 林怡均
Yi-jiun Lin
牛仰堯
Yang-yao Niu
王謹誠
Chin-cheng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 64
中文關鍵詞: 肺動脈高壓相位對比磁共振成像平均剪應力震盪剪應力
外文關鍵詞: Pulmonary arterial hypertension, Phase contrast magnetic resonance imagining, Average wall shear stress, Oscillatory shear index
相關次數: 點閱:230下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺動脈高壓是一種由於肺部阻力增加而造成脈管系統血流減少的綜合症狀, 對於心臟以及肺部
    具有嚴重的影響性。研究目的主要是分析PAH 與血液動力學之間的關係, 觀察正常人與具有
    PAH 患者的差異, 試著找出PAH 的發病機制。在此篇文章中, 總共分析了69組資料(25位健
    康者, 31位高流阻力型肺動脈高壓及13位高流量型肺動脈高壓患者), 使用相位對比磁共振成像
    技術可以獲取人體肺動脈內真實的血流情況, 並且計算統計學上群組之間的關聯性。利用流場型
    態、壓力分佈、相對面積變化、脈波速度、血液體積流率、肺動脈流阻、平均壁面及震盪剪應力、
    壁面剪應力及振盪剪應力的變異系數等多項血液動力學參數進行分析。


    Pulmonary arterial hypertension (PAH) is a syndrome leading to the reduction of blood flow in the pulmonary vasculature due to increasing pulmonary vascular resistance (PVR). This disease has a serious influence on both the heart and lungs. A total of 69 cases (25 healthy volunteers, 31 patients with PAH-HR (high flow resistance) and 13 patients with PAH-HV (high volumetric flow rate)) are analyzed to investigate the difference of hemodynamics between the healthy pulmonary artery and PAH. Furthermore, the pathogenesis of PAH is also discussed. The Phase Contrast Magnetic Resonance Imaging (PC-MRI) and statistical analysis are used to calculate and analyze physical quantities in order to investigate the relationship between hemodynamics and PAH. Flow patterns, pressure distribution, relative area change (RAC), pulse wave velocity (PWV), blood volumetric flow rate (Q), pulmonary vascular resistance (PVR), mean value of average wall shear stress (Ms), oscillatory shear index (Mo), the coefficient of variance of average wall shear stress (CVs) and oscillatory shear index (CVo) are measured in pulmonary artery.

    CONTENTS Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . .. . . . . . . . . . . . . . 3 2 PC-MRI measurement and analysis . . . . . . . . . . . . . . . . . . .9 2.1 Image acquisition . . . . . . . . . . . . . . .. . . . . . . . . . . 10 2.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Physical parameters of blood . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Calculation of pressure . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Relative area change (RAC) and Pulse wave velocity (PWV) . . . . . 14 2.3.3 Pulmonary vascular resistance (PVR) . . . . . . . . . . . . . . . 15 2.3.4 Calculation of shear stress . . . . . . . . . . . . . . . . . . . 15 2.3.5 The coefficient of variance of AWSS (CVs) and OSI (CVo . . . . . . 18 3 RESULTS AND DISCUSSION 20 3.1 Analysis of flow patterns and pressure distribution . . . . . . . . 20 3.1.1 Main pulmonary artery . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Left pulmonary artery . . . . . . . . . . . . . . . . . . . . . . 22 3.1.3 Right pulmonary artery . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Relative area change and Pulse wave velocity . . . . . . . . . . . . 24 3.3 Blood volumetric flow rate and pulmonary vascular resistance . . . . 25 3.4 Analysis of shear stress distribution . . . . . . . . . . . . . .. . 26 3.4.1 Coefficient of variance of AWSS (CVs) and OSI (CVo) . . . . . . . 27 4 CONCLUSIONS AND FUTURE WORKS . . . . . . .. . . . . . .. . . . . . 29 4.1 Conclusions . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    Berger SA and Jou LD. Flows in stenotic vessels. Annual Reviews of Fluid Mechanics 2000; 32: 347-382.
    Bock J, Frydrychowicz A, Lorenz R, et al. In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magnetic Resonance in Medicine 2011; 66: 1079-1088.
    Bonderman D, Jakowitsch J, Redwan B, et al. Role for staphylococci in misguided thrombus resolution of chronic thromboembolic pulmonary hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology 2008; 28: 678-684.
    Bradlow WM, Gatehouse PD, Hughes RL, et al. Assessing normal pulse wave velocity in the proximal pulmonary arteries using transit time: a feasibility, repeatability, and observer reproducibility study by cardiovascular magnetic resonance. Journal of Magnetic Resonance Imaging 2007; 25: 974-981.
    Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. American Journal of Physiology - Heart and Circulatory Physiology 2007; 292: H1209-H1224.
    Chiu JJ, Usami S and Chien S. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Annals of Medicine 2009; 41: 19-28.
    Friman O, Hennemuth A, Harloff A, et al. Probabilistic 4D blood flow mapping. Medical Image Computing and Computer 2010; 13: 416-423.
    Frydrychowicz A, Stalder AF, Russe MF, et al. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. Journal of Magnetic Resonance Imaging 2009; 30: 77-84.
    Fuster V, Steele PM, Edwards WD, et al. Primary pulmonary hypertension: natural
    history and the importance of thrombosis. Circulation 1984; 70: 580-587.
    Gan CTJ, Lankhaar JW, Westerhof N, et al. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 2007; 132: 1906-1912.
    Gatehouse PD, Keegan J, Crowe LA, et al. Applications of phase contrast flow and velocity imaging in cardiovascular MRI. European Radiology 2005; 15: 2172-2184.
    Geiger J, Markl M, Jung B, et al. 4D-MR flow analysis in patients after repair for tetralogy of fallot. European Radiology 2011; 21: 1651-1657.
    Harloff A, Albrecht F, Spreer J, et al. 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magnetic Resonance in Medicine 2009; 61: 65-74.
    Harloff A, NuBaumer A, Bauer S, et al. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magnetic Resonance in Medicine 2010; 63: 1529-1536.
    Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology 2004; 43: 13S-24S.
    Ibrahim ES. Accurate method for measuring arterial pulse wave velocity by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 2012; 14(Suppl 1): O12.
    Jeffery TK and Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Progress in Cardiovascular Diseases 2002; 45: 173-202.
    Knight J, Olgac U, Saur SC, et al. Choosing the optimal wall shear parameter for the prediction of plaque location - A patient-specific computational study in human right coronary arteries. Atherosclerosis 2010; 210: 578-581.
    Ku DN, Giddens DP, Zarins CK, et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5: 293-302.
    Kvitting JP, Ebbers T, Wigstr‥om L, et al. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-Dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. The Journal of Thoracic and Cardiovascular Surgery 2004; 127: 1062-1607.
    Li YS, Haga JH and Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of Biomechanics 2005; 38: 1949-1971.
    Markl M, Frydrychowicz A, Kozerke S, et al. 4D Flow MRI. Journal of Magnetic Reso-nance Imaging 2012; 36: 1015-1036.
    Marque V, Kieffer P, Atkinson J, et al. Elastic properties and composition of the aortic wall in old spontaneously hypertensive rats. Hypertension 1999; 34: 415-422.
    McLaughlin VV and McGoon MD. Pulmonary arterial hypertension. Circulation 2006;
    114: 1417-1431.
    Morgan VL, Roselli RJ and Lorenz CH. Normal three dimensional pulmonary artery
    flow determined by phase contrast magnetic resonance imaging. Annals of Biomedical Engineering 1998; 26: 557-566.
    Mousseaux EM, Tasu JP, Jolivet O, et al. Pulmonary arterial resistance: noninvasive measurement with indexes of pulmonary flow estimated at velocity-encoded MR imagingpreliminary experience. Radiology 1999; 212: 896-902.
    Olesen SP, Claphamt D and Davies P. Haemodynamic shear stress activates a k+ current in vascular endothelial cells. Nature 1988; 331: 14.
    Pedley TJ. The Fluid Mechanics of Large Blood Vessels. UK: Cambridge University Press Cambridge, 1980.
    Peir’o C, Redondo J, Rodriguez-Martinez A, et al. Influence of endothelium on cultured vascular smooth muscle cell proliferation. Hypertension 1995; 25: 748-751.
    Peng HH, Chung HW, Yu HY, et al. Estimation of pulse wave velocity in main pulmonary artery with phase contrast MRI: preliminary investigation. Journal of Magnetic Reso-nance Imaging 2006; 24: 1303-1310.
    Reiter G, Reiter U, Kovacs G, et al. Magnetic resonance derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circulation: Cardiovascular Imaging 2008; 1: 23-30.
    Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. Journal of the American College of Cardiology 2013; 62: D34-D41.
    Srichai MB, Lim RP, Wong S, et al. Cardiovascular applications of phase-contrast MRI. American Journal of Roentgenology 2009; 192: 662-675.
    Stalder AF, Russe MF, Frydrychowicz A, et al. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magnetic Resonance in Medicine 2008; 60: 1218-1231.
    Tang BT, Pickard SS, Chan FP, et al. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study. Pulmonary Circulation 2012; 2: 470-476.
    Tyszka JM, Laidlaw DH, Asa JW, et al. Three dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. Journal of Magnetic Resonance Imaging 2000; 12: 321-329.
    Waite L and Fine J. Applied Biofluid Mechanics NY: McGraw-Hill Inc, 2007.
    Yamashita S, Isoda H, Hirano M, et al. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. Journal of Magnetic Resonance Imaging 2007; 25: 473-478.

    QR CODE