簡易檢索 / 詳目顯示

研究生: 夏佑賢
Yu-Shien Shiah
論文名稱: 使用雙主動層改善非晶氧化銦鎵鋅(a-IGZO)薄膜電晶體之電特性
Improvement of Amorphous Indium-Gallium-Zinc Oxide TFT using Double-Stacked Active Layer
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
顏文正
Wen-Zheng Yan
陳威州
Wei-Zhou Chen
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 72
中文關鍵詞: 非晶氧化銦鎵鋅雙主動層
外文關鍵詞: a-IGZO, double-stacked active layer, isotype homojunction
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在顯示科技方面上,金屬氧化物半導體因擁有較高的均勻度利於大面積製程、可低溫製程、較低的製程費用等優點,因此被視為現今最具潛力的薄膜電晶體材料。場效載子遷移率扮演影響薄膜電晶體電特性好壞一很重要的腳色,對金屬氧化物來說,影響其內部載子遷移率有兩大因素,第一個為金屬氧化物內載子的濃度,這項因素我們能藉由採用high-k閘極絕緣層材料來做改善,第二個則是其內部缺陷密度,就這部分而言,我們通常會改變沉積時不同氣體的通量,來降低此情況的發生。然而本論文將利用有別於舊有改善做法的方式,來降低元件內部之缺陷密度,我們提出的概念為運用isotype homojunction會形成能障的特點,使通道層形成在離閘極絕緣層較遠處,如此一來可避免通道層受到閘極絕緣層和主動層間界面缺陷的影響,而達到較佳電特性的薄膜電晶體。改善過後的場效載子遷移率可達44.73 cm2/Vs,約為對照組的兩倍,缺陷密度指標的次臨界斜率也有明顯的提升。


Amorphous oxide semiconductors (AOSs) represented by amorphous indium-gallium-zinc oxide (a-IGZO) are considered to be the most competitive materials in display industry for its great uniformity over large size display, low fabrication temperature and low production cost. Field effect mobility plays a crucial role in the quest to achieve high performance thin film transistor (TFT) using oxide semiconductor as its active layer. Two main factors that contribute to field effect mobility of oxide TFT are carrier concentration and trap densities. The former can be improved through the implementation of high k dielectric. As for the latter, it is typically reduced by tuning the deposition condition. However, instead of minimizing trap densities by controlling film deposition condition, I have developed a novel approach which deposits an extremely high oxygen partial pressure amorphous indium-gallium-zinc oxide layer prior to the active layer, followed by distinct dual thermal annealing process. By adopting the proposed idea, it is possible to form a channel layer at the interface of high oxygen partial pressure a-IGZO layer and active layer due to isotype homojunction concept. This means that the channel will not be affected by the interface traps created through atomic disruption of different materials. As a result, the field effect mobility of my device can be enhanced to 44.73 cm2/Vs, which represents a two times improvement in the field effect mobility as compared to the control sample. An explicit reduction on subthreshold swing, an indicator of trap densities, can also be observed.

目錄 論文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX Chapter 1 概論 1 1.1 研究背景 1 1.2 研究動機與方向 3 1.3 論文大綱 4 Chapter 2 材料介紹與理論基礎 5 2.1 閘極絕緣層高介電材料 5 2.1.1 元件尺寸的發展 5 2.1.2 高介電材料的興起 6 2.1.3 高介電材料的選擇 7 2.1.4 常見的高介電材料的種類 10 2.1.5 高介電材料HfO2之製程方式 10 2.2 金屬氧化物半導體介紹 11 2.2.1 金屬氧化物半導體材料概述 11 2.2.2 非晶氧化銦鎵鋅材料特性 11 2.3 非晶金屬氧化物半導體傳輸機制與其能隙間的電子組態 14 2.4 金屬氧化物薄膜電晶體結構 16 2.5 金屬氧化物薄膜電晶體之製程開發 18 2.5.1 脈衝雷射法 (Pulsed laser deposition, PLD) 18 2.5.2 浸沾法 (Sol-gel) 18 2.5.3 旋轉塗佈 ( Spin coating ) 19 2.5.4 濺鍍法 ( Sputter ) 19 2.6 金屬氧化物膜電晶體操作模式 19 2.7 TFT元件參數萃取方式 22 2.7.1 載子遷移率(Mobility, μ) 23 2.7.2 臨界電壓 (Threshold Voltage, Vth) 25 2.7.3 次臨界斜率 (Subthreshold Swing, S.S.) 26 2.7.4 開關電流比(On/Off Current Ratio, IOn/IOff) 26 2.7.5 半導體參數分析儀 (Semiconductor Parameter Analyzer) 27 2.8 a-IGZO薄膜材料分析 27 2.8.1 場發射掃描式電子顯微鏡 (FE-SEM) 27 2.8.2 四點探針(Four Point Probes) 28 2.8.3 霍爾量測(Hall Effect Measurement) 29 Chapter 3 使用雙主動層改善非晶氧化銦鎵鋅(a-IGZO)薄膜電晶體之電特性 30 3.1 實驗說明 30 3.2 元件製作前之量測 31 3.3 元件製作 34 3.4 結果與討論 40 3.4.1 元件特性之量測與討論 40 3.4.2 能量障壁之驗證 46 3.5 結論 50 Chapter 4 使用黃光微影技術改善非晶氧化銦鎵鋅(a-IGZO)薄膜電晶體之關閉漏電流 52 4.1 實驗說明 52 4.2 元件製作 53 4.2.1 閘極圖案化a-IGZO元件 53 4.2.2 以黃光微影圖案化閘極的雙主動層a-IGZO元件結構說明 57 4.3 結果與討論 59 4.4 結論 63 Chapter 5 結論與未來展望 64 參考文獻 66

[1] J. F. Wager, "ZnO Transparent Thin-Film Transistor Device Physics," Science, vol. 300, no. 5623, pp. 1245-1246, 2003.
[2] N. Munzenrieder, C. Zysset, T. Kinkeldei and G. Troster, "Design Rules for IGZO Logic Gates on Plastic Foil Enabling Operation at Bending Radii of 3.5 mm," IEEE Transactions on Electron Devices, vol. 59, no. 8, pp. 2153-2159, 2012.
[3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, no. 25, pp. 488-492, 2004.
[4] 王木俊 且 劉傳璽, 薄膜電晶體液晶顯示器原理與實務, 新文京開發出版股份有限公司, 2008.
[5] 陳金鑫 且 黃孝文, OLED 夢幻顯示器, 五南圖書出版社股份有限公司, 2007.
[6] B. Y. Tsui and H. W. Chang, "Formation of interfacial layer during reactive sputtering of hafnium oxide," Journal of Applied Physics, vol. 93, pp. 10119-10124, 2003.
[7] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's," IEEE Electron Device Letters, vol. 18, no. 5, pp. 209-211, 1997.
[8] P. Zurcher, C. J. Tracy, R. E. Jones Jr, P. Alluri, P. Y. Chu, B. Jiang, M. Kim, B. M. Melnick, M. V. Raymond, D. Roberts, T. P. Remmel, T. L. Tsai, B. E. White, S. Zafar and S. J. Gillespie, "Barium Strontium Titanate Capacitors for Embedded Dram," Materials Research Society Symposium Proceedings, vol. 541, pp. 11-22, 1999.
[9] A. Grill, "Electrode structures for integration of ferroelectric or high dielectric constant films in semiconductor devices," Materials Research Society Symposium Proceedings, vol. 541, pp. 89-99, 1999.
[10] K. J. Hubbard and D. G. Schlom, "Thermodynamic stability of binary oxides in contact with silicon," Journal of Materials Research, vol. 11, no. 11, pp. 2757-2776, 1996.
[11] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, M. Zeitzoff and J. C. S. Woo, "The impact of High-k gate dielectrics and metal gate electrodes on Sub-100 nm MOSFETs," IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
[12] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee and K. Fujihara, "Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition," Applied Physics Letters, vol. 81, no. 3, pp. 472-474, 2002.
[13] M. H. Cho, D. H. Ko, Y. G. Choi, K. Jeong, I. W. Lyo, D. Y. Noh, H. J. Kim and C. N. Whang, "Thickness dependence of Y2O3 films grown on an oxidized Si surface," Journal of Vacuum Science & Technology A, vol. 19, no. 1, pp. 200-206, 2001.
[14] B. H. Lee, Y. Jeon, K. Zawadzki, W. J. Qi and J. Lee, "Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon," Applied Physics Letters, vol. 74, no. 21, pp. 3143-3145, 1999.
[15] V. Mikhelashvili and G. Eisenstein, "Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation," Journal of Applied Physics, vol. 89, no. 6, pp. 3256-3269, 2001.
[16] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B, vol. 18, no. 3, pp. 1785-1791, 2000.
[17] G. D. Wilk, R. M. Wallace and J. M. Anthony, "High-K gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275, 2001.
[18] D. C. Hsu, Y. K. Chang, M. T. Wang, P. C. Juan, Y. L. Wang and J. Y. M. Lee, "The positive bias temperature instability of nn-channel metal-oxide-semiconductor field-effect transistors with ZrO2 gate dielectric," Applied Physics Letters, vol. 92, p. 202901, 2008.
[19] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee, "Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application," Technical Digest-International Electron Devices Meeting., vol. 1999, pp. 133-136, 1999.
[20] I. Barin, Thermochemical Data of Pure Substances, VCH, Weiheim, 1989.
[21] A. Convertino, A. Valentini, T. Ligonzo and R. Cingolani, "Organic–inorganic dielectric multilayer systems as high reflectivity distributed Bragg reflectors," Applied Physics Letters, vol. 71, p. 732, 1997.
[22] N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa and A. Toriumi, "Thermal stability of a thin HfO2/ultrathin SiO2/Si structure: Interfacial Si oxidation and silicidation," Japanese Jouranl of Applied Physics, vol. 42, pp. 138-140, 2003.
[23] K. J. Choi, W. C. Shin and S. G. Yoon, "Ultrathin HfO2 gate dielectric grown by plasma-enhanced chemical vapor deposition using Hf[OC(CH3)3]4 as a precursor in the absence of O2," Journal of Materials Research, vol. 18, no. 1, pp. 60-65, 2003.
[24] L. Pereira, A. Marques, H. Aguas, N. Nedev, S. Georgiev, E. Fortunato and R. Martins, "Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application," Materials Science and Engineering B, vol. 109, pp. 89-93, 2004.
[25] O. Renault, D. Samour, D. Rouchon, P. Holliger, A. M. Papon, D. Blin and S. Marthon, "Interface properties of ultra-thin HfO2 films grown by atomic layer deposition on SiO2/Si," Thin Solid Films, vol. 428, pp. 190-194, 2003.
[26] M. Orita, H. Ohta, M. Hirano, S. Narushima and H. Hosono, "Amorphous transparent conductive oxide InGaO3 (ZnO)m (m≤ 4): a Zn4s conductor," Philosophical Magazine Part B., vol. 81, no. 5, pp. 501-515, 2001.
[27] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang and B. Lewis, "A study of low temperature crystallization of amorphous thin film indium-tin-oxide," Journal of Applied Physics, vol. 85, no. 12, pp. 8445-8450, 1999.
[28] M. Yasukawa, H. Hosono, N. Ueda and H. Kawazoe, "Novel Transparent and Electroconductive Amorphous Semiconductor: amorphous AgSbO3 Film.," Journal of Applied Physics, vol. 34, no. 3A, pp. L281-L284, 1995.
[29] E. Arca, K. Fleischer and I. V. Shvets, "Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide," Applied Physics Letters, vol. 99, no. 11, p. 111910, 2011.
[30] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, "p-channel thin-film transistor using p-type oxide semiconductor, SnO," Applied Physics Letters, vol. 93, no. 3, p. 032113, 2008.
[31] H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya and H. Hosono, "Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial film," Applied Physics Letters, vol. 82, no. 7, p. 1048, 2003.
[32] A. J. Bosman and C. Crevecoeur, "Mechanism of the Electrical Conduction in Li-Doped NiO," Physical Review, vol. 144, no. 2, pp. 763-770, 1966.
[33] M. L. Tu, Y. K. Su and C. Y. Ma, "Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 100, no. 5, p. 053705, 2006.
[34] D. C. Look, G. M. Renlund, R. H. Burgener II and J. R. Sizelove, "As-doped p-type ZnO produced by an evaporation/sputtering process," Applied Physics Letters, vol. 85, no. 22, pp. 5269-5271, 2004.
[35] Y. Ohya, H. Saiki and Y. Takahashi, "Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide," Journal of Materials Science, vol. 29, no. 15, pp. 4099-4103, 1994.
[36] R. L. Huffman, "Zno-channel thin-film transistors: Channel mobility," Journal of Applied Physics, vol. 95, no. 10, pp. 5813-5819, 2004.
[37] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
[38] H. Hosono, K. Nomura, Y. Ogo, T. Uruga and T. Kamiya, "Factors controlling electron transport properties in transparent amorphous oxide semiconductors," Journal of Non-Crystalline Solids, vol. 354, pp. 2796-2800, 2008.
[39] T. Kamiya, K. Nomura, and H. HosonoH, "Present status of amorphous In-Ga-Zn-O thin-film transistors," Sci. Technol. Adv. Mater. 11, 044305, 2010
[40] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya, H. Hosono, "Effects of excess oxygen on operation characteristics of amorphous In–Ga–Zn–O thin-film transistors, " Appl. Phys. Lett. 99, 093507, 2011.
[41] H. Hosono, M. Yasukawa and H. Kawazoe, "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides," Journal of Non-Crystalline Solids, vol. 203, pp. 334-344, 1996.
[42] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi and S. Kaneko, "Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors," Japanese Journal of Applied Physics, vol. 48, no. 1, p. 010203, 2009.
[43] 戴亞翔, TFT-LCD 面板的驅動與設計, 五南圖書出版社股份有限公司, 2008.
[44] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim and C. J. Kim, "Control of threshold voltage in ZnO-based oxide thin film transistors," Applied Physics Letters, vol. 93, no. 3, p. 033513, 2008.
[45] P. Barquinha, L. Pereira, G. Gonalves, R. Martins and E. Fortunato, "The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs," Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008.
[46] J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song and C. S. Hwang, "Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors," Electrochemical and Solid-State Letters, vol. 11, no. 6, pp. H157-H159, 2008.
[47] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya and H. Hosono, "Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors," Applied Physics Letters, vol. 99, no. 9, p. 093507, 2011.
[48] S. Y. Huang, T. C. Chang, M. C. Chen, S. W. Tsao, S. C. Chen, C. T. Tsai and H. P. Lo, "Device characteristics of amorphous indium gallium zinc oxide thin film transistors with ammonia incorporation," Solid-State Electronics, vol. 61, no. 1, pp. 96-99, 2011.
[49] Y. K. Moon, S. Lee, W. S. Kim, B. W. Kang, C. O. Jeong, D. H. Lee and J. W. Park, "Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator," Applied Physics Letters, vol. 95, p. 013507, 2009.
[50] P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante and E. Fortunato, "Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material," IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 954-960, 2008.
[51] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee and Y. C. Joo, "Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor," Japanese Journal of Applied Physics, vol. 51, no. 1, p. 011401, 2011.
[52] E. N. Cho, J. H. Kang and I. Yun, "Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors," Current Applied Physics, vol. 11, no. 4, pp. 1015-1019, 2011.
[53] H. Kim, K. K. Kim, S. N. Lee, J. H. Ryon and R. D. Dupuis, "Low resistance Ti/Au contacts to amorphous gallium indium zinc oxides," Applied Physics Letters, vol. 98, no. 11, p. 112107, 2011.
[54] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee and Y. C. Joo, "Erratum: Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor," Japanese Journal of Applied Physics, vol. 51, no. 2 PART 1, p. 029201, 2012.
[55] J. M. Lee, K. K. Kim, S. J. Park and W. K. Choi, "Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO," Applied Physics Letters, vol. 78, no. 24, pp. 3842-3844, 2001.
[56] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim and S. I. Kim, "Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment," Applied Physics Letters, vol. 90, no. 26, p. 262106, 2007.
[57] R. Chen, W. Zhou, M. Zhang, M. Wong and H. S. Kwok, "Self-aligned indium-gallium-zinc oxide thin-film transistor with phosphorus-doped source/drain regions," IEEE Electron Device Letters, vol. 33, no. 8, pp. 1150-1152, 2012.
[58] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, "Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes," Thin Solid Films, vol. 516, no. 17, pp. 5899-5902, 2008.
[59] W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, B. D. Ahn and J. W. Park, "An investigation of contact resistance between metal electrodes and amorphous gallium–indium–zinc oxide (a-GIZO) thin-film transistors," Thin Solid Films, vol. 518, no. 22, pp. 6357-6360, 2010.
[60] H. Hu, C. Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, B. J. Cho, W. K. Choi and N. Yakovlev, "Physical and electrical characterization of HfO 2 metal–insulator–metal capacitors for Si analog circuit applications," Journal of Applied Physics, vol. 94, no. 1, pp. 551-557, 2003.
[61] Z. He, W. Wu, H. Xu, J. Zhang and Y. Tang, "Influence of O2/Ar Ratio on Microstructures and Properties of Hafnium Dioxide Films," Chinese Journal of Vacuum Science and Technology, vol. 26, no. 2, pp. 159-162, 2006.
[62] Y. Yang and W. Tang, "Effect of O2 Flux on the Growth Process of HfO2 Thin Films Deposited by Reactive Sputtering," Advances in Condensed Matter Physics, vol. 2, pp. 12-16, 2013.
[63] W. T. Liu, Z. T. Liu, F. Yan, H. Tian and Q. J. Liu, "Influence of Oxygen Atmosphere on Electrical Properties of Magnetron Sputtered HfO2 Thin Films," Bulletin of The Chinese Ceramic Society, vol. 29, no. 5, 2010.
[64] I. K. Lee, S. W. Lee, J. G. Gu, K. S. Kim and W. J. Cho, "Comparative Study of Device Performance and Reliability in Amorphous InGaZnO Thin-Film Transistors with Various High-k Gate Dielectrice," Japanese Journal of Applied Physics, vol. 52, pp. 06GE05-1-06GE05-4, 2013.
[65] Y. H. Lin and J. C. Chou, "Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material," Journal of Nanomaterials, vol. 2014, p. 347858, 2014.
[66] E. N. Cho, J. H. Kang and I. Yun, "Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors," Current Applied Physics, vol. 11, pp. 1015-1019, 2011.
[67] K. Y. Chan, E. Bunte, H. Stiebig and D. Knipp, "Influence of contact effect on the performance of microcrystalline silicon thin-film transistors," Applied Physics Letters, vol. 89, p. 203509, 2006.
[68] A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono, "Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor," Applied Physics Letters, vol. 94, p. 133502, 2009.
[69] H. H. Hsu, C. Y. Chang, C. H. Cheng, P. C. Chen, Y. C. Chiu, P. Chiou and C. P. Cheng, " High Mobility Field-Effect Thin Film Transistor Using Room-Temperature High-k Gate Dielectrics," Journal of Display Technology, vol. 10, no. 10, pp. 875-881, 2014.
[70] Y. S. Chun, S. Chang and S. Y. Lee, "Effects of gate insulators on the performance of a-IGZO TFT fabricated," Microelectronic Engineering, vol. 88, no. 7, pp. 1590-1593, 2011.
[71] S. Y. Lee, S. Chang and J. S. Lee, "Role of high-k gate insulators for oxide thin film transistors," Thin Solid Films, vol. 518, no. 11, pp. 3030-3032, 2010.
[72] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo and H. D. Kim, "Origin of threshold voltage instability in indium-gallium-zinc oxide thin film," Applied Physics Letters, vol. 93, p. 123508, 2008.
[73] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo and H. D. Kim, "Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor," Applied Physics Letters, vol. 92, p. 072104, 2008.
[74] S. W. Lee, P. J. Jeon, K. Choi, S. W. Min, H. Kwon and S. Im, "Analysis of Self-Heating Effect on Short Channel Amorphous InGaZnO Thin-Film Transistors," IEEE Electron Device Letters, vol. 36, no. 5, pp. 472-474, 2015.
[75] H. J. Jang, S. M. Lee and J. T. Park, "Device Degradation Under High Gate and Drain Bias Stress in IGZO Transistors," Lecture Notes in Electrical Engineering, vol. 235, pp. 401-408, 2013.
[76] S. Y. Huang, T. C. Chang, L. W. Lin, M. C. Yang, M. C. Chen, J. C. Jhu and F. Y. Jian, "The asymmetrical degradation behavior on drain bias stress under illumination for InGaZnO thin film transistors," Applied Physics Letters, vol. 100, p. 222901, 2012.
[77] M. Mativenga, M. Seok and J. Jang, "Gate bias-stress induced hump-effect in transfer characteristics of amorphous-indium-galium-zinc-oxide thin-fim transistors with various channel widths," Applied Physics Letters, vol. 99, p. 122107, 2011.
[78] I. K. Lee, S. W. Lee, J. G. Gu, K. S. Kim and W. J. Cho, "Comparative Study of Device Performance and Reliability in Amorphous InGaZnO Thin-Film Transistors with Various High-k Gate Dielectrics," Japanese Journal of Applied Physics, vol. 52, p. 06GE05, 2013.
[79] L. Yuan, X. Zou, G. Fang, J. Wan, H. Zhou and X. Zhao, "High-Performance Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors With HfOxNy/HfO2/HfOxNy Tristack Gate Dielectrics," IEEE Electron Device Letters, vol. 32, no. 1, pp. 42-44, 2011.
[80] J. C. Park, I. T. Cho, E. S. Cho, D. H. Kim, C. Y. Jeong and H. I. Kwon, "Comparative Study of ZrO2 and HfO2 as a High-k Dielectric for Amorphous InGaZnO Thin Film Transistors," Journal of Nanoelectronics and Optoelectronics, vol. 9, pp. 67-70, 2014.
[81] Y. Shao, X. Xiao, X. He, W. Deng and S. Zhang, "Low-Voltage a-InGaZnO Thin-Film Transistors With Anodized Thin HfO2 Gate Dielectric," IEEE Electron Device Letters, vol. 36, no. 6, pp. 573-575, 2015.

無法下載圖示 全文公開日期 2022/07/25 (校內網路)
全文公開日期 2027/07/25 (校外網路)
全文公開日期 2027/07/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE