簡易檢索 / 詳目顯示

研究生: 許維倫
Wei-Lun Hsu
論文名稱: 用於提升OLED 外部量子效率之微透鏡陣列研究
Improving the External Quantum Efficiency of Organic Light-Emitting Diodes through Microlens Array
指導教授: 李志堅
Chih-Chien Lee
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 87
中文關鍵詞: 微透鏡陣列折射率匹配層雷射蝕刻外部量子效率有機發光二極體
外文關鍵詞: Microlens array (MLA), Refractive index matching layer (RIML), Laser etching, External quantum efficiency (EQE), Organic light-emitting diode (OLED)
相關次數: 點閱:409下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,有機發光二極體 (Organic Light Emitting Diode,簡稱OLED) 在顯示器與電子產品應用上蓬勃發展,目前技術上已發展成熟,但在OLED製程中,折射率不匹配是一個常見的問題,也被稱為折射率缺陷。它指的是OLED中使用的不同材料之間的折射率差異,導致光在不同材料之間的界面上產生反射和折射。這些反射和折射造成了光的能量損失和光路徑的改變,最終影響了OLED的光學性能。而微透鏡陣列 (Microlens Array,簡稱MLA) ,透過調節折射率、結構厚度、界面修飾以及尺寸等光學層面的優化,來改善OLED的光學損失,進一步提升光耦合效率。
本論文分成兩部分探討如何製作微透鏡陣列以及應用上OLED上之效果。第一部分,我們討論選擇三氧化鎢 (WO3) 與氟化鎂 (MgF2) 作為折射率匹配層(Refractive Index Matching Layer,簡稱RIML) ,盡管MgF2具有較玻璃低的折射率,但其難以被雷射加工,因此我們將WO3放置底層作為雷射吸收層,並將MgF2堆疊在WO3上,此結構能夠成功降低MgF2的加工難度,使其易於圖案化。
在第二部分,我們將WO3/ MgF2加工成一系列尺寸不同的MLA,並應用在綠色磷光OLED上,其單層式折射率匹配層結構最佳效率提升率為18.88%,後續我們優化出MLA之最佳面積與厚度,其最佳效率提升率為32.46%,兩者相比之下,新增圖案化陣列其OLED效率提升率額外增加13.58%,使其最大外部量子效率達到24.57%。


In recent years, Organic Light Emitting Diodes (OLEDs) have experienced a flourishing development in applications such as displays and electronic devices. The technology has now reached a mature stage. However, in the OLED fabrication process, refractive index mismatch is a common issue, also known as refractive index defect. This refers to the difference in refractive indices between different materials used in OLEDs, which results in reflection and refraction of light at the interfaces between these materials. These reflections and refractions result in energy loss and alteration of the optical pathway, ultimately affecting the optical performance of OLEDs. Microlens Array (MLA) offer a solution to mitigate these issues by optimizing optical aspects such as refractive index, structural thickness, interface modification, and size. By enhancing these optical parameters, MLA help to improve the optical losses and enhance the efficiency of light coupling in OLEDs.
This paper is divided into two parts, discussing the fabrication of a microlens array and its application in OLEDs. In the first part, we explore the use of tungsten trioxide (WO3) and magnesium fluoride (MgF2) as the refractive index matching layer (RIML). Although MgF2 has a lower refractive index than glass, it is difficult to process using lasers. Therefore, we place WO3 as the bottom layer to act as a laser-absorbing layer and stack MgF2 on top of WO3. This structure successfully reduces the processing difficulty of MgF2 and enables its patternization.
In the second part, we fabricated a series of MLAs with varying sizes using WO3/ MgF2 and applied them to green phosphorescent OLEDs. The MLA with a single-layer refractive index matching structure achieved an optimal efficiency enhancement of 18.88%. Subsequently, we optimized the MLA for the best area and thickness, resulting in an optimal efficiency enhancement of 32.46%. In comparison, the addition of patternized arrays further increased the OLED efficiency enhancement by an additional 13.58%, leading to a maximum external quantum efficiency of 24.57%.

目錄 摘要...........................................................I ABSTACT.........................................................IV 致謝............................................................VI 目錄............................................................VII 圖引索..........................................................IX 表引索..........................................................XII 第一章 緒論......................................................1 第二章 文獻回顧..................................................2 2-1有機發光元件的起源............................................2 2-2微透鏡陣列(Microlens array,MLA)發展史........................ 6 2-3有機發光元件之發光機制 ........................................18 2-3-1電致激發機制................................................18 2-3-2螢光(Fluorescence).........................................19 2-3-3磷光(Phosphorescence)......................................20 2-3-4主客體能量轉換機制(host-guest energy transfer)..............21 2-4文獻探討.....................................................26 2-5研究動機與目的................................................32 第三章 製程介紹.................................................33 3-1實驗設備......................................................33 3-1-1製程設備....................................................33 3-1-2量測儀器....................................................38 3-2實驗流程......................................................40 3-3實驗之商用材料.................................................43 第四章 折射率匹配層之雷射微結構蝕刻...............................45 4-1折射率匹配層(RIML)材料說明.....................................45 4-2雷射雕刻現象討論...............................................46 4-2-1氧化鎂(MgF2)................................................46 4-2-2三氧化鎢(WO3)...............................................51 4-3複合式RIML(氧化鎢(WO3)/氧化鎂(MgF2))...........................59 第五章 結合MLA之OLED討論........................................63 5-1 MLA之OLED元件製作流程........................................63 5-2 OLED之MLA元件結構優化........................................64 5-2-1 單層式結構厚度優化..........................................64 5-2-2 MLA圖形面積優化............................................68 5-2-3 MLA圖形單一結構多層式測試...................................72 5-3表面形貌分析..................................................76 5-3-1 MLA表面輪廓................................................76 5-3-2 AFM表面粗糙度..............................................80 5-4實驗結果......................................................82 第六章 結論與未來展望...........................................84 參考文獻.........................................................85

參考文獻
[1]M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in Organic Crystals”, J. Chem. Phys. 38, 2042 (1963).
[2]M. Koden, “OLED Displays and Lighting” in History of OLEDs, State of New Jersey, USA, Wiley-IEEE, ch. 1, pp. 2 (2016).
[3]C. Adachi, T. Tsutsui, S. Saito, “Blue light-emitting organic electroluminescent devices”, Appl. Phys. Lett. 56, 799 (1990).
[4]J. Kido, M. Kohda, K. Okuyama, K. Nagai, “Organic electroluminescent devices based on molecularly doped polymers”, Appl. Phys. Lett. 61, 761 (1992).
[5]C. W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 51, 913 (1987).
[6]L. S. Hung, C. W. Tang, M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett. 70, 152 (1997).
[7]H. S. Alhokail, “Microelectronics” in Fabrication of photoresist microlens arrays, Monastir, Tunisia, IEEE, pp. 49 (1998).
[8]M. K. Wei, I. L. Su, Y. J. Chen, M. Chang, H. Y. Lin, T. C. Wu, “The influence of a microlens array on planar organic light-emitting devices”, J. Micromech Microeng. 16, 368 (2006).
[9]M. K. Wei, J. H. Lee, H. Y. Lin, Y. H. Ho, K. Y. Chen, C. C. Lin, C. F. Wu, H.Y. Lin, J. H. Tsai, T. C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array”, J. Opt., 10 (2008).
[10]M. Ashraf, C. Gupta, F. Chollet, S. V. Springham, R. S. Rawat, “Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder”, Opt. Lasers Eng. 46, 10, 711 (2008).
[11]E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays”, Microelectron. Eng. 86, 11, 2255 (2009).
[12]Z. J. Lian, S. Y. Hung, M. H. Shen, H. Yang, “Rapid fabrication of semiellipsoid microlens using thermal reflow with two different photoresists”, Microelectron Eng. 115, 1, 46 (2014).
[13]H. Wu, T. W. Odom, G. M. Whitesides, “Reduction Photolithography Using Microlens Arrays: Applications in Gray Scale Photolithography”, Anal. Chem. 74, 3267 (2002).
[14]D. Kuang, X. Zhang, M. Gui, Z. Fang, “Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency”, Appl. Opt. 48, 5, 974 (2009).
[15]S. Möller, S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays”, J. Appl. Phys. 91, 3324 (2002).
[16]J. G. Zhou, X. C. Hua, Y. K. Chen, Y. Y. Ma, C. C. Huang, Y. D. Wanga, M. K. Fung, “Nano-modified indium tin oxide incorporated with ideal microlens array for light extraction of OLED”, J. Mater. Chem. C, 13 (2019).
[17]Y. S. Kim, J. Kim, J. S. Choe, Y. G. Roh, H. Jeon, J. C. Woo, “Semiconductor Microlenses Fabricated by One-Step Wet Etching”, IEEE Photon. Technol. Lett. 12, 507 (2000).
[18]L. W. Pan, L. Lin, J. Ni, “Micro Electro Mechanical Systems” in Cylindrical Plastic Lens Array Fabricated by A Micro Intrusion Process, Orlando FL, USA, IEEE , pp. 217 (1999).
[19]N. S. Ong, Y. H. Koh, Y. Q. Fu, “Microlens array produced using hot embossing process”, Microelectron Eng. 60, 3, 365 (2002).
[20]D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, B. Dai, “Fabrication of a Microlens Array with Controlled Curvature by Thermally Curving Photosensitive Gel Film beneath Microholes”, ACS Appl. Mater. Interfaces, 9, 19, 16604 (2017).
[21]C. S. Lima, M. H. Hongb, Y. Linc, G. X. Chend, A. S. Kumara, M. Rahmana, L. S. Tan, J. Y. H. Fuha, G. C. Lime, “Sub-micron surface patterning by laser irradiation through microlens arrays”, J. Mater. Process. Technol. 192, 328 (2007).
[22]Y. Bai, J. Feng, Y. F. Liu, J. F. Song, J. Simonen, Y. Jin, Q. D. Chen, J. Zi, H. B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation”, Org. Electron. 12, 11, 1927 (2011).
[23]K. Naessens, H. Ottevaere, P. V. Daele, R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation”, Appl. Surf. Sci.Volumes. 208, 15 ,59 (2003).
[24]K. H. Choi, J. Meijer, T. Masuzawa, D. H. Kim, “Excimer laser micromachining for 3D microstructure”, J. Mater. Process. Technol. 149, 1,10, 561 (2004).
[25]Y. C. Lee, C. M. Chena, C. Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface profiles”, Sens. Actuator A Phys. 117, 2, 14, 349 (2005).
[26]J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, X. Hou, “Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser”, ACS Appl. Mater. Interfaces. 5, 19, 9382 (2013).
[27]B. X. Wang, J. Y. Qi, Y. M. Lu, J. X. Zheng, Y. Xu, X. Q. Liu, “Rapid Fabrication of Smooth Micro-Optical Components on Glass by Etching-Assisted Femtosecond Laser Modification”, Materials, 15, 678 (2022).
[28]J. Shi, C. W. Tang, “Doped organic electroluminescent devices with improved stability”, Appl. Phys. Lett. 70, 1665 (1997).
[29]TH. Forster, “Transfer mechanisms of electronic excitation” Discuss Faraday Soc. 2, 27, 326 (1959).
[30]D. L. Dexter, “A Theory of Sensitized Luminescence in Solids”, J. Chem. Phys. 21, 836 (1953).
[31]T. Senthil, J. B. Marston, M. P. A. Fisher, “Spin quantum Hall effect in unconventional superconductors”, Phys. Rev. 60, 4245 (1999).
[32]P. D. Laible, R. S. Knox, T. G. Owens, “Detailed Balance in Fo1rster-Dexter Excitation Transfer and Its Application to Photosynthesis”, J. Phys. Chem. B, 102, 1641 (1997).
[33]K. Hong, H. K. Yu, I. Lee, K. Kim, S. Kim, J. L. Lee, “Enhanced Light Out-Coupling of Organic Light-Emitting Diodes: Spontaneously Formed Nanofacet-Structured MgO as a Refractive Index Modulation Layer”, Adv. Mater. 22, 43, 4890 (2010).
[34]K. Saxenaa, D. S. Mehta, V. K. Rai, R. Srivastava, G. Chauhan, M. N. Kamalasanan, “Implementation of anti-reflection coating to enhance light out-coupling in organic light-emitting devices”, J. Lumin. 128, 3, 525 (2008).
[35]N. Gupta, R. Grover, D. S. Mehta, K. Saxena, “Light out-coupling enhancement of organic light emitting devices using nano-structured substrate produced by rapid thermal processing”, J. Opt. 17, 7 (2015).
[36]A. K. Dubey, V. Yadava, “Laser beam machining—A review”, Int. J. Mach. Tools Manuf. 48, 6, 609 (2008).
[37]L. Liang, J. Yuan, X. Li, F. Yang, L. Jiang, “Wear behavior of the micro-grooved texture on WC-Ni3Al cermet prepared by laser surface texturing”, Int. J. Refract. Hard Met. 72, 211 (2018).

無法下載圖示 全文公開日期 2025/07/31 (校內網路)
全文公開日期 2025/07/31 (校外網路)
全文公開日期 2025/07/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE