簡易檢索 / 詳目顯示

研究生: 李榮坤
Rong-kun Li
論文名稱: 無線行動通訊天線研究
Study of Wireless Mobile Communication Antennas
指導教授: 廖文照
Wen-jiao Liao
口試委員: 陳士元
Shih-yuan Chen
楊成發
Chang-fa Yang
王蒼容
Chun-long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 189
中文關鍵詞: 超穎材料波束切換天線無線區域網路陣列天線無線存取空間分集手機天線微帶天線
外文關鍵詞: Metamaterial, Beam switching antenna, Wireless LAN, Array antenna, Access point, Spatial diversity, Mobile phone antenna, Patch antenna
相關次數: 點閱:279下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出了幾款具有商用價值的微型化手機天線,第一款為應用於手機之Wi-Fi/Wi-MAX (2.5~2.7, 3.4~3.7 GHz)的微型晶片天線,本款晶片天線不需要淨空區,可提供給電路有更大的置放空間,且與電路的整合性較高。而第二款為WWAN/WLAN/Wi-MAX之多頻帶單極天線,吾人善用多分支結構以及背板的寄生元件來達到多頻段的操作,可維持良好的輻射效率。第三款是一組由PIFA/IFA/Chip三個元件天線組成的,具有空間分集特性之智慧型手機天線,吾人利用空間分集技術來縮減多路徑效應所造成的衰減,並且找出各天線的最佳化擺設位置。第四款為整合DAB/DTV/WWAN/GPS/Wi-Fi五隻天線於MID行動裝置,吾人透過戶外的實測驗證VHF頻段DAB主動天線的接收效能。
其次,本論文提出二款應用於無線存取基地台的Wi-Fi/Wi-MAX偶極天線,除了能滿足802.11 a/b/g,亦可涵蓋Wi-MAX (2.5~2.7, 3.4~3.7 GHz)通訊頻段,可有較遠的訊號涵蓋範圍以及高傳輸率。
在指向性陣列天線設計方面,本論文提出了二款具有可切換波束方向的陣列天線。第一款為寬頻八木天線系統,由八木天線結合一對四的射頻開關所組成,達到可切換360度方位,以針對不同位置之物品,達到特定方位標籤辨識之應用。第二款為應用於2.4 GHz的波束切換天線,由巴特勒矩陣電路與八木天線組成,八木天線具有高增益且高的前後比特性,不但可避免非傳輸方向的功率損耗且同時抑制其他方向的空間雜訊。主波束可藉由選擇巴特勒矩陣的輸入埠來切換波束方向。
吾人提出一款應用於5.8 GHz頻段的指向性天線,微帶天線寬長比為1:5,可達到高增益特性,吾人在天線上方加上超穎材料的聚焦板可再進一步提升增益,利用此新穎的的設計架構,不僅可免除複雜的饋入網路又能達到與陣列天線相近的效果。
最後為全向性涵蓋陣列天線的設計。本論文提出了二款。第一款為適用於無線區域網路(5.15~5.85 GHz)摺疊串列式偶極陣列天線的設計,吾人利用摺疊式偶極天線全向性的特性,設計出可涵蓋360度的通訊範圍的串列式陣列天線。第二款為應用於UHF頻段電子式波束切換微帶陣列天線設計,由16隻微帶天線組成,藉由選取適當的天線元件,可達到水平面上360度的涵蓋。


This thesis proposed several types of miniaturized mobile phone antenna designs for commercial uses. The first design is a miniatured Wi-Fi/Wi-MAX (2.5~2.7, 3.4~3.7 GHz) chip antenna for mobile phone applications. This antenna does not require any empty space, which yields more space for system circuits. The second design is a WWAN/WLAN/Wi-MAX multi-band monopole antenna. We use multiple branches and parasitic element on the bottom layer to achieve multi-band operation and provide good radiation efficiency. The third antenna is a PIFA/IFA/Chip antenna arrangement with multi-band and spatial diversity features for smart phone applications. We use the spatial diversity technique to reduce multi-path fading and find the optimal displacement position for each antenna. In fourth research project, we integrate five antennas of DAB/DTV/WWAN/GPS/Wi-Fi applications into a mobile internet device. Among the five antennas, one is an active DAB antenna with improved reception capability.
We also proposed two types of Wi-Fi/Wi-MAX dipole antennas for wireless access point applications. They not only satisfy WLAN 802.11 a/b/g band requirements, but also cover the communication bands of Wi-MAX (2.5~2.7, 3.4~3.7 GHz).
For directive array antenna research, We proposed two types of beam switching array antenna. The first is a broadband yagi antenna system which combines a 1-to-4 RF switch to switch the beam toward four different directions on the azimuth plane. The second beam switching design composes a Butler Matrix and yagi antennas. A yagi antenna provides high gain and high front to back ratio. Through measurements, we verified that this combination can generate four directive switchable beams near the broadside direction.
By applying the metamaterial, we developed a directive antenna at 5.8 GHz band. The patch antenna has a large L/W ratio of 5:1 and has a focusing substrate made of metamaterial placed on top of patch. The antenna gain can therefore enhanced further. This novel configuration, eliminate the need of a complicated feeding network required by phase array antennas.
We also developed two array antennas of omni-directional coverage. The first is serially-connected folded dipole array antenna for Hyper LAN (5.15~5.85 GHz). The second antenna is an electronical beam switching array antenna in the UHF band. The antenna consists of 16 patch elements. It can achieve full azimuth coverage by selecting proper element antenna combinations.

目錄 摘要 I ABSTRACT III 誌謝 V 目錄 VIII 圖目錄 XI 表目錄 XXIII 第一章 緒論 1 1.1研究動機 1 1.2行動裝置天線種類 2 1.3章節概述 2 第二章 應用於無線存取基地台與行動裝置之Wi-Fi/Wi-MAX微型化晶片天線..4 2.1 前言 4 2.2 平面式倒F型天線的演進與特性分析 4 2.3 平面式倒F型天線之模態分析 7 2.4 微型化Wi-Fi/Wi-MAX (3.4~3.7 GHz)晶片天線設計 9 2.5 微型化Wi-Fi/Wi-MAX (2.5~2.7 GHz)晶片天線設計 16 2.6 無線存取基地台Wi-Fi/Wi-MAX(2.5~2.7 GHz)天線設計 22 2.7 無線存取基地台Wi-Fi/Wi-MAX(3.4~3.7 GHz)天線設計 27 2.8 小結 37 第三章 適用於行動裝置之多頻段單極天線 38 3.1 前言 38 3.2 應用於WWAN/Wi-Fi/Wi-MAX之多頻段單極天線 38 3.3 應用於DVB-T/WWAN/Wi-Fi/Wi-MAX之多頻單極天線 52 3.4 小結 56 第四章 多天線系統於智慧型手機應用及其空間多樣性之探討 57 4.1 前言 57 4.2 應用於WWAN/WLAN/Wi-MAX之IFA天線 58 4.3 應用於Wi-Fi/Wi-MAX之PIFA天線 63 4.4 微型化GPS/Wi-MAX雙頻帶晶片天線 66 4.5 PIFA/IFA/Chip智慧型手機天線整合及其分集特性之探討 70 4.6 小結 76 第五章 整合DAB/DTV/WWAN/Wi-Fi/GPS天線於行動上網裝置(MID) 78 5.1 前言 78 5.2 應用於DTV全頻段電容性耦合饋入之單極天線設計 80 5.3 應用於WWAN之倒F型天線設計 84 5.4 應用於Wi-Fi之微型化晶片天線設計 85 5.5 應用於GPS之微型化晶片天線設計 87 5.6 DAB主動天線設計 89 5.7 應用於DAB頻段電容性耦合式饋入單極天線 99 5.8 行動上網裝置的多天線整合 102 5.9 小結 111 第六章 波束可切換的指向性陣列天線 112 6.1 前言 112 6.2 寬頻高增益八木天線 112 6.3 波束可切換之寬頻高增益八木天線系統 117 6.4 結合巴特勒矩陣電路的波束可切換八木陣列天線設計 127 6.5 小結 137 第七章 使用超潁材料的高增益微帶天線 138 7.1 前言 138 7.2 結合超穎材料的高增益微帶式5.8 GHz天線 139 7.3 小結 146 第八章 全向性陣列天線設計 147 8.1 適用於無線區域網路之串列摺疊式偶極全向性陣列天線 147 8.2 電子式波束切換全向性涵蓋超高頻陣列天線 154 8.3 可調整天線波束角度之超高頻全向性涵蓋陣列天線 166 8.4 小結 170 第九章 結論 171 參考文獻 174 附錄A 一對四射頻開關(GSWA-4-30DR)規格 179 附錄B NEC RF電晶體2SC5006規格 181

[1] C.-Y. Fang, L.-S. Cheng, J.-H. Li, C.-F. Yang, J.-H. Lin, C.-L. Liao, C.- H. Chen, S.-T. Lin, K.-C. Cheng, S.-F. Wang, M.-C. Pan, C.-L. Hu and Y.-C. Chien,“A planar chip antenna for 2.4/5.2GHz ISM band applications,” IEEE Antennas and Propagation Society International Symposium., vol. 1B, pp. 455-458, July 2005.
[2] Y.-F. Lin, C.-H. Lin, H.-M. Chen, J.-Y. Jan, W.-S. Chen, Woods, “Design of ceramic chip antenna for 2.4/5 GHz WLAN applications,” IEEE Antennas and Propagation Society International Symposium., pp. 985-988, 9-14 July 2006.
[3] K.-L. Wong, Planar Antennas for Wireless Communications, John Wiely and Sons, 2003.
[4] R. Garg, P. Bharita, I. Bahl, A. Ittipiboon, Microstrip Antenna Design Handbook, Boston London: Artech House, 2000.
[5] K. Hirasawa, M. Haneishi, Analysis, Design and Measurement of Small and Low-Profile Antennas. Boston Lonton: Artech House, 1992.
[6] 陳廷穎,「應用於行動裝置之微型化晶片天線設計」,國立台灣科技大學電
機工程研究所碩士論文, 民國九十七年。
[7] K.-R. Boyle, L.-P. Ligthart, “Radiating and balanced mode analysis of PIFA antennas,” IEEE Trans. Antennas Propag., vol. 54, pp.231-237, 2006.
[8] 華碩官方網站,「無線網路基地台g系列WL-320gP 」,
http://tw.asus.com/product.aspx?P_ID=aR61idi3sMexegre&templete=2。
[9] S.-W. Su, J.-H. Chou, “Printed omnidirectional access-point antenna for
2.4/5-GHz WLAN operation,” Microwave Opt. Technol. Lett., vol. 50, pp. 2403–2407, Sep. 2008.
[10] S.-W. Su, J.-H. Chou, “Hybrid of monopole and dipole antennas for concurrent 2.4- and 5-GHz WLAN access point,” EuCAP 3rd Europen Conference., pp. 545-548, 2009.
[11] R. A. Bhatti, Y. S. Shin, N. A. Nguyen, S. O. Park, “Design of a novel multiband planar inverted-F antenna for mobile terminals,” Proceedings IEEE IWAT., pp. 226-229, 2008.
[12] D. M. Nashaat, H. A. Elsadek, H. Ghali, “Single feed compact quad-band PIFA antenna for wireless communication applications,” IEEE Trans. Antennas Propag., vol. 53, no. 8, pp. 2631-2635, Aug. 2005.
[13] P. Ciais, R. Staraj, G. Kossiavas, C. Luxey, “Compact internal multiband antenna for mobile phone and WLAN standards,” Electron.Lett., vol. 40, no. 15, pp. 920-921, July 2004.
[14] M.-S Han, H.-T Kim, “Compact five band internal antenna for mobile phone,”IEEE Antennas and Propagation Society International Symposium., pp.
4381-4384, July 2006.
[15] J. Anguera, A. Cabedo, C. Picher, I. Sanz, M. Ribo, C. Puente, “Multiband handset antennas by means of groundplane modification,” IEEE Antennas and Propagation Society International Symposium., pp. 1253-1256, June 2007.
[16] Y.-X. Guo, I. Ang, M. Y. W. Chia, “Compact internal multiband antennas for mobile handsets,” IEEE Antennas and Wireless Propagation Letters., vol. 2, pp. 143-146, 2003.
[17] H. Park, K. Chung, J. Choi, “Design of a planar inverted-F antenna with very wide impedance bandwidth,” IEEE Microw. Wirelss Comp. Lett., vol. 16, no. 3, pp. 113-115, Mar. 2006.
[18] D.-B. Lin, I.-T. Tang, M.-Z. Hong, H.-P. Lin, “A compact quad-band PIFA by using defected ground structure,” IEEE Antennas and Propagation Society International Symposium., pp. 4677-4680, June 2007.
[19] W.-I. Kwak, S.-O. Park, J.-S. Kim, “A folded planar inverted-F antenna for GSM/DCS/Bluetooth triple-band applications,” IEEE Antennas and Wireless Propagation Letters., vol. 5, pp. 18-21, Dec. 2006.
[20] R.-C. Hua, C.-F. Chou, S.-J. Wu, T.-G. Ma, “Compact multiband planar
monopole antennas for smart phone applications,” IET, Microwaves Antennas and Propagation., vol. 2, pp. 473-481, Aug. 2008.
[21] K.-L. Wong , G.-Y. Lee, T.-W. Chiou, “A low-profile planar monopole
antenna for multiband operation of mobile handsets,” IEEE Trans. Antennas Propagation., vol. 51, pp. 121-125, Jan. 2003.
[22] Y. Ge, K. P. Essells, T. S. Bird, “A spiral-shaped printed monopole antenna for mobile communications,” IEEE Antennas and Propagation Society International Symposium., pp. 3681-3684, July 2006.
[23] C.-S. Liu, C.-N. Chiu, S.-M. Deng, “A compact disc-slit monopole antenna for mobile devices,” IEEE Antennas and Wireless Propagation Letters., vol. 7, pp. 251-254, 2008.
[24] X. Jing, Z. Du, K. Gong, “A compact multiband planar antenna for mobile
handsets,” IEEE Antennas and Wireless Propagation Letters., vol. 5, pp. 343-345, Dec. 2006.
[25] R. Li, B. Pan, J. Laskar, M. Tentzeris, ”A compact broadband planar antenna for GPS, DCS-1800, IMT-2000, and WLAN applicationss,” IEEE Antennas and Wireless Propagation Letters., vol. 6, pp. 25-27, 2007.
[26] T. W. Brown, S. R. Saunders, B. G. Evans, “Analysis of mobile terminal
diversity antennas,” IET Microw. Antennas Propag., vol. 152, pp. 1-6, Feb. 2005.
[27] B.-T Jiang, J.-F. Mao, “Design of an PIFA-IFA-monopole in dual-SIM mobile phone for GSM/DCS/Bluetooth operations,” ICMMT Proceedings., vol. 3, pp. 1050-1053, April 2008.
[28] Z. Li, S.-Y Rahmat, “Optimization of PIFA-IFA combination in handset antenna designs,” IEEE Trans. Antennas Propag., vol. 53, no. 5, pp. 1770-1778, May 2005.
[29] A. Diallo, C. Luxey, T.-P. Le, R. Staraj, G. Kossiavas, “Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3063-3074, Nov. 2006.
[30] Y. Ding, Z. Du, K. Gong, Z. Feng, “A novel dual-band printed diversity antenna for mobile terminals,” IEEE Trans. Antennas Propag., vol. 55, no. 7, pp. 2088-2096, July 2007.
[31] C.-H. Chang and K.-L. Wong, “Printed l/8-PIFA for penta-band WWAN operation in the mobile phone,” IEEE Trans. Antennas Propagat., vol. 57, pp. 1373-1381, May 2009.
[32] J. Avendal, Z. Ying, B.-K Lau, “Multiband diversity antenna performance
study for mobile phones,” Proceedings IEEE IWAT., pp. 193-196, Mar. 2007.
[33] C. Tounou, C. Decroze, D. Carsenat, T. Monediere, B. Jecko,“Diversity antennas efficiencies enhancement,” IEEE Antennas and Propagation Society
International Symposium., pp. 2101-2104, July 2006.
[34] M. Seshu, C. Brian, OMAPTM3 architecture from Texas Instruments opens new horizons for Mobile Internet Devices, Aug. 2008.
[35] 技嘉官方網站, 「M528行動上網裝置」,
http://www.gigabyte.tw/Products/Notebook/Products_Spec.aspx?ProductID=2833。
[36] 電子工程專輯, 「ㄧ個完整的數位音訊廣播(DAB)接收方案」,
http://www.eettaiwan.com/ARTP_8800373098_0.HTM。
[37] J.-D. Kraus, R.-J. Marhefka, Antennas: For All Applications, McGrawHill, 3ed, 2002.
[38] 黃耿毅,「剖風儀之關鍵零組件—印刷式八木天線設計」,國立中央大學
碩士論文,民國九十三年六月。
[39] Y. Qian, T. Itoh, “A broadband uniplanar microstrip to CPS transition,”
Proceedings APMC., vol. 2, pp. 609-612, 1997.
[40] N. Li, W. Chen, Z. Feng, “A switch sector beam planar antenna,” IEEE
Antennas and Propagation Society International Symposium., vol. 1A, pp.1-4, July 2005.
[41]李瑋仁,「四波束切換式智慧型陣列天線之研製」,國立中山大學電機工
程研究所碩士論文, 民國九十二年。
[42] T. A. Denidni, M. Nedil, “Experimental investigation of a new butler matrix using slotline technology for beamforming antenna arrays,” IET Microw. Antennas Propag., vol. 2, no. 7, pp. 640-649, Feb. 2008.
[43] M. Cooper, M. G. Goldburg, “Intelligent antennas: spatial division multiple access,” Annual Review of Communications, pp. 997-999, 1996.
[44] D.-M. Pozar, “A microstrip antenna aperture coupled to microstripline,”
Electron. Lett., vol.21, pp. 49-50, Jan. 1985.
[45] Z.-B. Weng, N.-B. Wang, Y.-C. Jiao, “Study on high gain patch antenna with metamaterial cover, ” ISAPE International Symposium., pp. 1-2, 2006.
[46] F. Zhu, Q. Lin, J. Hu, “A directive patch antenna with a metamaterial cover,” Proceedings APMC., vol. 3, 2005.
[47] Y.-H. Liu, X.-P. Zhao, “Investigation of anisotropic negative peameability medium cover for patch antenna,” IET, Microwaves Antennas and Propagation., vol. 2, no. 7, pp. 737-744, Aug. 2008.
[48] F.-R. Hsiao, K.-L. Wong, “Omnidirectional Planar Folded Dipole Antenna,” IEEE Trans. Antennas Propagat., vol. 52, pp. 1898-1992, July 2004.

QR CODE