簡易檢索 / 詳目顯示

研究生: 高誌祥
Chih-Hsiang Kao
論文名稱: 喉部病變影像分析診斷系統之開發
Development of diagnostic imaging system for laryngeal lesions
指導教授: 邱智瑋
Chih-Wei Chiu
郭中豐
Chung-Feng Kuo
口試委員: 劉紹正
Shao-Cheng Liu
黃昌群
Chang-Chiun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 喉部病變檢測直方圖平移費雪線性判別支持向量機人工類神經網路
外文關鍵詞: laryngeal lesion detection, histogram translation, Fisher linear discriminant, support vector machine, artificial neural network
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

喉部症狀以內視鏡觀測時會依不同醫師間有不同標準,對檢查結果非常仰賴檢查者本身經驗之主觀判定,使得不同研究間的數據和結果幾乎不相容。本研究目的是開發據客觀標準之可偵測喉部病變電腦輔助診斷系統,病變包括聲帶息肉、聲帶囊腫、聲帶白斑、聲帶腫瘤以及逆流性咽喉炎等,並針對逆流性咽喉炎作嚴重程度分級。
本研究針對喉部病變對咽喉造成的變化進行量化,利用在內視鏡影片中咽喉特徵結構進行自動部位分割。採用包含杓狀軟骨、聲門、左聲帶和右聲帶等區域的色相、紋理及幾何分析,藉由影像處理技術分析喉部影像特徵便能診斷喉部病變。本研究亦測試色相和紋理共36種特徵,使用費雪線性判別篩選對逆流性咽喉炎具分類性能的特徵。
本研究開發喉病變檢測系統共459份樣本,包含逆流性咽喉炎、聲帶息肉、囊腫、白斑和腫瘤等病變。聲帶病變分類準確度為97.45%。而逆流性咽喉炎檢測應用支持向量機(Support Vector Machine, SVM),藉由準確度、敏感度和偽陽性率三種方式進行評估結果。評估結果分別為準確度97.16%、敏感度98.11%和偽陽性率3.77%。本研究使用人工類神經網路(Artificial Neural Network, ANN)作為逆流性咽喉炎之分類嚴重程度的方式,其準確度96.48%。


The symptoms of the larynx are observed by endoscopes according to different standards. The results of the examination depend on the subjective judgment of the examiner's own experience, making the data and results of different studies almost incompatible. The purpose of this study was to develop a computer-aided diagnosis system for detectable laryngeal lesions based on objective criteria, including vocal cord polyps, vocal cord cysts, vocal cord leukoplakia, vocal cord tumors, and reflux pharyngitis, and to grade the severity of reflux pharyngitis. .
In this study, the changes in the throat caused by laryngeal lesions were quantified, and the automatic segmentation of the throat features in the endoscopic film was performed. Laryngeal lesions can be diagnosed by image processing techniques using hue, texture, and geometric analysis of areas including sacral cartilage, glottis, left vocal cords, and right vocal cords. This study also tested 36 features of hue and texture, using Fisher's linear discriminant screening to characterize the classification performance of reflux pharyngitis.
This study developed a total of 459 samples of laryngeal lesion detection system, including reflux pharyngitis, vocal cord polyps, cysts, leukoplakia and tumors. The classification accuracy of vocal cord lesions was 97.45%. The support vector machine (SVM) was applied to the detection of reflux pharyngitis. The results were evaluated by accuracy, sensitivity and false positive rate. The evaluation results were 97.16% accuracy, 98.11% sensitivity and 3.77% false positive rate. In this study, artificial neural network (ANN) was used as the classification severity of reflux pharyngitis, with an accuracy of 96.48%.

目錄 摘要 I ABSTRACT III 目錄 IV 圖目錄 VIII 表目錄 XI 第1章 緒論 1 1.1 研究動機 2 1.2 文獻回顧 2 1.2.1 喉部病變檢測 3 1.2.2 逆流性咽喉炎檢測 4 1.2.3 自動區域分割 5 1.2.4 分類器 7 1.3 研究目的 8 1.4 論文架構 9 第2章 人類喉部結構功能與逆流性咽喉炎介紹 11 2.1 人類喉嚨構造 11 2.2 人類喉嚨功能 13 2.3 喉部病變介紹與診斷 14 2.3.1 聲帶息肉 14 2.3.2 聲帶囊腫 14 2.3.3 聲帶白斑 15 2.3.4 聲帶腫瘤 16 2.3.5 逆流性咽喉炎 16 第3章 影像相關理論 20 3.1 影像色彩空間轉換 20 3.1.1 RGB色彩空間 20 3.1.2 HSV色彩空間 21 3.1.3 YCbCr色彩空間 21 3.1.4 YIQ色彩空間 22 3.2 影像增強 23 3.2.1 負片轉換 23 3.2.2 對比度自適應直方圖等化 24 3.2.3 Canny邊緣偵測 25 3.2.3.1 非最大值抑制 26 3.2.3.2 遲滯門檻化法 26 3.2.3.3 Canny邊緣偵測器基本步驟 27 3.3 影像分割 27 3.3.1 主動輪廓法 30 3.4 形態學 32 3.4.1 標記化 32 3.4.2 膨脹 33 3.4.3 侵蝕 33 3.4.4 斷開與閉合 34 3.5 影像特徵值 35 3.5.1 影像清晰程度 36 3.5.1.1 變異數法 36 3.5.1.2 差距係數總和 37 3.5.1.3 最大梯度值 37 3.5.1.4 影像拉普拉斯能量 38 3.5.2 區域分割特徵 39 3.5.2.1 面積 39 3.5.2.2 長寬比 39 3.5.2.3 形心 39 3.5.2.4 熵值 40 3.5.2.5 灰階共生矩陣 40 3.6 支持向量機 43 3.6.1 線性支持向量機 44 3.6.2 SVM擴展到多元分類 47 3.7 人工類神經網路簡介 48 3.7.1 人工類神經網路的分類 50 3.7.2 人工類神經網路的運作過程 51 3.7.3 類神經網路的優點 52 3.7.4 倒傳遞類神經網路 53 3.7.4.1 倒傳遞類神經網路架構 53 3.7.4.2 倒傳遞類神經演算法 54 3.7.4.3 靈敏度 56 3.7.4.4 倒傳遞類神經網路的參數設定 57 第4章 實驗與驗證 59 4.1 樣本來源及選擇 59 4.2 影像擷取裝置與電腦硬體設備 59 4.3 系統流程 60 4.4 影像篩選 62 4.4.1 特徵過濾 63 4.4.2 閾值下限二值化 64 4.4.3 聲門結構判別 64 4.4.4 最清晰影像 65 4.5 影像補償 68 4.6 區域分割 69 4.6.1 杓狀軟骨分割 69 4.6.2 聲帶分割 71 4.6.3 自適性聲帶分割 71 4.6.4 分割精度驗證 75 4.7 特徵分析 77 4.7.1 色相 77 4.7.2 紋理 78 4.6.3 幾何 78 4.6.4 特徵選擇 78 4.8 聲帶病變辨識 81 4.8.1 聲帶外型改變病變特徵 81 4.8.2聲帶色相改變病變特徵 81 4.8.3 聲帶辨識分析 82 4.9逆流性咽喉炎(LPR)分析 83 4.9.1辨別逆流性咽喉炎結果分析 83 4.9.2 嚴重程度分級 85 第5章 結論 88 第6章 參考文獻 91   圖目錄 圖1. 1 論文架構流程圖 10 圖2. 1 喉後部的軟骨構造 11 圖2. 2 喉前部的軟骨構造 12 圖2. 3 聲帶息肉影像 14 圖2. 4 聲帶囊腫影像 15 圖2. 5 聲帶白班影像 16 圖2. 6 聲帶腫瘤影像 16 圖2. 7逆流性咽喉炎影像 17 圖3. 1 YCbCr 色彩空間 22 圖3. 2負片轉換曲線 24 圖3. 3 Canny邊緣偵測 27 圖3. 4基於門檻值分割法 28 圖3. 5 標記化 32 圖3. 6 影像膨脹執行結果 33 圖3. 7 影像斷開執行結果 35 圖3. 8 影像閉合執行結果 35 圖3. 9 灰階共生矩陣的角度參數示意圖 41 圖3. 10支持向量分類器示意圖 44 圖3. 11 生物神經元構造圖 49 圖3. 12處理單元示意圖 50 圖3. 13無監督式學習網路之不同之網路架構 51 圖3. 14倒傳遞類神經網路架構示意圖 53 圖3. 15雙彎曲轉移函數 54 圖3. 16線性轉移函數 54 圖4. 1 閃頻喉鏡 60 圖4. 2 系統影像處理流程圖 61 圖4. 3 影像篩選 63 圖4. 4特徵過濾 63 圖4. 5 聲門分割過程 65 圖4. 6不同模糊程度的影像 66 圖4. 7 影像補償流程圖 68 圖4. 8影像補償 69 圖4. 9杓狀軟骨分割流程圖 70 圖4. 10杓狀軟骨分割過程 71 圖4. 11聲帶種子點流程 71 圖4. 12 A樣本與B樣本左聲帶及右聲帶進行相同迭代次數 73 圖4. 13每次迭代所成長區域之熵 73 圖4. 14迭代次數之間的熵差值 74 圖4. 15自適性聲帶分割 74 圖4. 16對樣本作自動分割及手動分割比較 75 圖4. 17聲帶影像(黃色)以及兩條直線(黑色)用於計算幾何特徵 78 圖4. 18息肉與囊腫外形差異 81

[1] Yelken, K., Gultekin, E., Guven, M., Eyibilen, A., Aladag, I., “Impairment of voice quality in paradoxical vocal fold motion dysfunction”, Journal of Voice, 24(6), 724-727, 2010.
[2] Rosen, C.A., “Stroboscopy as a research instrument: development of a perceptual evaluation tool”, The Laryngoscope., 115(3), 423-428, 2005.
[3] Mehta, D.D., Hillman, R.E., “Current role of stroboscopy in laryngeal imaging”, Curr Opin Otolaryngol Head Neck Surg., 20(6), 429-436, 2012.
[4] Woo, P., “Objective measures of laryngeal imaging: what have we learned since Dr. Paul Moore”, Journal of Voice, 28(1), 69-81, 2014.
[5] Gugatschka, M., Kiesler, K., Beham, A., Rechenmacher, J., Friedrich G., “Hyperplastic epithelial lesions of the vocal folds: combined use of exfoliative cytology and laryngostroboscopy in differential diagnosis”, Eur. Arch. Otorhinolaryngol., 265, 797-801, 2008.
[6] Djukic, V., Milovanovic, J., Jotic, A.D., Vukasinovic, M., “Stroboscopy in detection of laryngeal dysplasia effectiveness and limitations”, Journal of Voice, 28(2), 262.e13–262, 2014.
[7] Schade, G., Leuwer, R., Kraas, M., Rassow, B., Hess, M.M., “Laryngeal morphometry with a new laser “clip on” device”, Lasers in Surgery and Medicine, 34(5), 363-367, 2004.
[8] Speyer, R., Wieneke, G.H., Kersing, W., Dejonckere, P.H., “Accuracy of measurements on digital video stroboscopic images of the vocal folds”, Annals of Otology, Rhinology & Laryngology., 114(6), 443-450, 2005.
[9] Deguchi, S., Ishimaru, Y., Washio, S., “Preliminary evaluation of stroboscopy system using multiple light sources for observation of pathological vocal fold oscillatory pattern”, Annals of Otology, Rhinology & Laryngology., 116(9), 687-694, 2007.
[10] Poburka, B.J., “A new stroboscopy rating form”, Journal of Voice., 13(3), 403-413, 1999.
[11] Johns, M.M., “Update on the etiology, diagnosis, and treatment of vocal fold nodules, polyps, and cysts” Current opinion in otolaryngology & head and neck surgery, 11(6), 456-461, 2003.
[12] Wallis, L., Jackson-Menaldi, C., Holland, W., Giraldo, A., “Vocal fold nodule vs. vocal fold polyp: answer from surgical pathologist and voice pathologist point of view” Journal of Voice, 18(1), 125-129, 2004.
[13] Menon, R., Petropoulakis, L., Soraghan, J.J., Lakany, H., MacKenzie, K., Hilmi, O., Di Caterina, G. “Automatic quantification of vocal cord paralysis” In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC, 108-113, 2017.
[14] Mendez, A., El-Zehiry, N., Zapirain, B.G., Elmaghraby, A., “Pathological vocal folds features extraction using a modified active contour segmentation”, Majlesi Journal of Electrical Engineering, 4(4), 2010.
[15] Verikas, A., Gelzinis A., Bacauskiene, M., Uloza, V., “Towards a computer-aided diagnosis system for vocal cord diseases”, Artificial Intelligence in Medicine, 36(1), 71-84, 2006.
[16] DeVault, K.R. “Overview of therapy for the extraesophageal manifestations of gastroesophageal reflux disease”, The American journal of gastroenterology, 95(8), 39-44, 2000.
[17] Hanson, D.G., Jiang, J., Chi, W., “Quantitative color analysis of laryngeal erythema in chronic posterior laryngitis” Journal of Voice, 12(1), 78-83, 1998.
[18] Ozturan, O., Dogan, R., Yenigun, A., Veyseller, B., Yildirim, Y.S., “Photographic objective alterations for laryngopharyngeal reflux diagnosis”, Journal of Voice, 31(1), 78-85, 2017.
[19] Du, C., AL‐Ramahi, J., Liu, Q., Yan, Y., Jiang, J., “Validation of the laryngopharyngeal reflux color and texture recognition compared to pH‐probe monitoring” The Laryngoscope, 127(3), 665-670, 2017
[20] Andrade-Miranda, G., Godino-Llorente, J.I. “Glottal gap tracking by a continuous background modeling using inpainting” Medical & biological engineering & computing, 55(12), 2123-2141, 2017.
[21] Turkmen, H.I., Albayrak, A., Karsligil, M.E., Kocak, I. “Superpixel-based segmentation of glottal area from videolaryngoscopy images” Journal of Electronic Imaging, 26(6), 061608, 2017.
[22] Osma-Ruiz, V., Godino-Llorente, J.I., Sáenz-Lechón, N., Fraile, R. “Segmentation of the glottal space from laryngeal images using the watershed transform” Computerized Medical Imaging and Graphics, 32(3), 193-201, 2008.
[23] Drioli, C., Foresti, G.L. “Enhanced videokymographic data analysis based on vocal folds dynamics modeling” In Sixteenth Annual Conference of the International Speech Communication Association, Dresden, Germany, 2015.
[24] Madero Orozco, H., Vergara Villegas, O.O., Cruz Sánchez, V.G., Ochoa Domínguez Hde, J., Nandayapa Alfaro Mde, J., “Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine”, Biomedical Engineering Online, 14(9), 2015.
[25] Turkmen, H.I., Karsligil, M.E., Kocak, I., “Classification of laryngealdisorders based on shape and vascular defects of vocal folds”, Computers in Biology and Medicine, 62, 76-85, 2015.
[26] Witt, D.R., Chen, H., Mielens, J.D., McAvoy, K.E., Zhang, F., Hoffman, M.R., Jiang, J.J., “Detection of chronic laryngitis due to laryngopharyngeal reflux using color and texture analysis of laryngoscopic images”, Journal of Voice, 28(1), 98-105, 2014.
[27] Murry, T., “Clinical voice disorders: an interdisciplinary approach” In Mayo Clinic Proceedings, 66(6), 656, Elsevier, 1991.
[28] Kezirian, E.J., Hohenhorst, W., de Vries, N., “Drug-induced sleep endoscopy: the VOTE classification”, European Archives of Oto-Rhino-Laryngology, 268(8), 1233-1236, 2011.
[29] Powell, J., Cocks, H.C., “Mucosal changes in laryngopharyngeal reflux--prevalence, sensitivity, specificity and assessment”, The Laryngoscope, 123(4), 985-991, 2013.
[30] Park, W., Hicks, D.M., Khandwala, F., Richter, J.E., Abelson, T.I., Milstein, C., Vaezi, M.F., “Laryngopharyngeal reflux: prospective cohort study evaluating optimal dose of proton-pump inhibitor therapy and pretherapy predictors of response”, The Laryngoscope., 115(7), 1230-1238, 2005.
[31] Belafsky, P.C., Postma, G.N., Koufman, J.A., “Laryngopharyngeal reflux symptoms improve before changes in physical findings”, The Laryngoscope, 111(6), 979-981, 2001.
[32] Belafsky, P.C., Postma, G.N., Koufman, J.A., “The validity and reliability of the reflux finding score (RFS)”, The Laryngoscope, 111(8), 1313-1317, 2001.
[33] Hill, R.K., Simpson, C.B., Velazquez, R., Larson, N., “Pachydermia is not diagnostic of active laryngopharyngeal reflux disease”, The Laryngoscope, 114(9), 1557-1561, 2004.
[34] Branski, R.C., Bhattacharyya, N., Shapiro, J., “The reliability of the assessment of endoscopic laryngeal findings associated with laryngopharyngeal reflux disease”, The Laryngoscope, 112(6), 1019-1024, 2002.
[35] Noordzij, J.P., Khidr, A., Desper, E., Meek, R.B., Reibel, J.F., Levine, PA., “Correlation of pH probe-measured laryngopharyngeal reflux with symptoms and signs of reflux laryngitis”, The Laryngoscope, 112(12), 2192-2195, 2002.
[36] Belafsky, P.C., Postma, G.N., Koufman, J.A., “Validity and reliability of the reflux symptom index (RSI)” Journal of voice, 16(2), 274-277, 2002.
[37] Fida, E., Baber, J., Bakhtyar, M., Fida, R., Iqbal, M.J., “Unsupervised image segmentation using lab color space” In Intelligent Systems Conference, London, United Kingdom, 774-778, 2017.
[38] Reza, A.M., ”Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement” Journal of VLSI signal processing systems for signal, image and video technology, 38(1), 35-44, 2004.
[39] Kharel, N., Alsadoon, A., Prasad, P.W.C., Elchouemi, A., “Early diagnosis of breast cancer using contrast limited adaptive histogram equalization (CLAHE) and Morphology methods”, In Information and Communication Systems (ICICS), 8th International Conference, Irbid, Jordan, 120-124, 2017.
[40] Ayyavoo, T., Suseela, J.J., “Illumination pre-processing method for face recognition using 2D DWT and CLAHE”, IET Biometrics, 2017, DOI: 10.1049/iet-bmt.2016.0092.
[41] Canny, J., “A computational approach to edge detection”, In Readings in Computer Vision, 184-203, 1987.
[42] Zhu, D., Li, J., Wang, X., Peng, J., Shi, W., Zhang, X. “Semantic edge based disparity estimation using adaptive dynamic programming for binocular sensors”, Sensors, 18(4), 1074, 2018.
[43] Shamekhi, S., Beygi, M., Hossein, M., Azarian, B., Gooya, A. “A novel spot-enhancement anisotropic diffusion method for the improvement of segmentation in two-dimensional gel electrophoresis images, based on the watershed transform algorithm”, Iranian Journal of Medical Physics, 12(3), 209-222, 2015.
[44] Alattar, A.M., Oudah, M.A. “An adaptive active contour model for building extraction from aerial images”, In Information and Communication Technology (PICICT), Palestinian International Conference, Gaza, Palestine, 103-109, 2017.
[45] Haralick, R.M., “Statistical and structural approaches to texture”, Proceedings of the IEEE, 67(5), 786-804, 1979.
[46] Yoon, Y.G., Lee, S.L., Chung, C.W., Kim, S.H., “An effective defect inspection system for polarized film images using image segmentation and template matching techniques”, Computers & Industrial Engineering, 55(3), 567-583, 2008.
[47] Vapnik, V., Izmailov, R. “Knowledge transfer in SVM and neural networks”, Annals of Mathematics and Artificial Intelligence, 81(1-2), 3-19, 2017.
[48] Asfaram, A., Ghaedi, M., Azqhandi, M.A., Goudarzi, A., Dastkhoon, M. “Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye”, RSC Advances, 6(46), 40502-40516, 2016.
[49] Turker, M., Koc-San, D. “Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, hough transformation and perceptual grouping”, International Journal of Applied Earth Observation and Geoinformation, 34, 58-69, 2015.
[50] Vapnik, V.N. “An overview of statistical learning theory”, IEEE transactions on neural networks, 10(5), 988-999, 1999.
[51] 蘇木春,張孝德 編著,「機器學習:類神經網路、模糊系統以及基因演算法則」,全華圖書,台灣台北,2007年。
[52] 王進德、蕭大全 編著,「類神經網路模式應用與實作」,全華圖書,台灣台北,2005年。
[53] 羅華強 編著,「類神經網路:MATLAB的應用」,高立圖書,台灣台北,2005年。
[54] Dice, L.R., “Measures of the amount of ecologic association between species”, Ecology, 26(3), 297-302, 1945.
[55] Pribuišienė, R., Ulozas, V., Kupčinskas, L., “Diagnostic sensitivity and specificity of laryngoscopic signs of reflux laryngitis”, Medicina, 44(4), 280-287, 2008.
[56] Choi, W.J., Choi, T.S., “Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor”, Computer Methods and Programs in Biomedicine, 113(1), 37-54, 2014.
[57] Javaid, M., Javid, M., Rehman, M.Z., Shah, S.I., “A novel approach to CAD system for the detection of lung nodules in CT images”, Computer Methods and Programs in Biomedicine, 135, 125-139, 2016.

無法下載圖示 全文公開日期 2023/08/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE