簡易檢索 / 詳目顯示

研究生: Belay Getahun Tegegne
Belay Getahun Tegegne
論文名稱: N-取代吩噻嗪作為非水有機氧化還原液流電池的可逆和穩定陰極電解液
N-Substituted Phenothiazines as Reversible and Stable Catholytes for Nonaqueous Organic Redox Flow Batteries
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王復民
Fu-Ming Wang
葉禮賢
Li-Hsien Yeh
游進陽
Chin-Yang Yu
闕居振
Chu-Chen Chueh
吳嘉文
Chia-Wen (Kevin) Wu
王丞浩
Chen-Hao Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 109
中文關鍵詞: N-烷基吩噻嗪陰極電解液非水相有機氧化還原液流電池非水相電解質N-烷基吩噻嗪陰極電解液非水相電解質空間位阻方法性能調節空間位阻方法性能調節氧化還原反應氧化還原反應
外文關鍵詞: N-alkylphenothiazine catholyte, Nonaqueous organic redox flow batteries, nonaqueous electrolyte, N-alkylphenothiazine catholyte, nonaqueous electrolyte, steric hindrance approach property tuning, steric hindrance approach property tuning, redox-active, redox-active
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
氧化還原液流電池(Redox flow batteries, RFBs)是一種具有發展潛力的大規模電能儲存系統,因其可彈性的調整電容量和功率,可以更有效地整合太陽能和風能等間歇性能源。當電位範圍超過接近1.23 V時,傳統氧化還原液流電池容易受到水電解的影響,但非水相有機氧化還原液流電池(Non-aqueous organic redox flow batteries, NAORFBs)不僅不受到水電解的影響,更可以實現高電池電位,從而達到更高的能量密度。然而,NAORFBs 仍處於發展的早期階段,仍有許多問題需要克服,其中氧化還原活性物質的降解、缺乏適當的隔離膜、有機溶劑的黏度過高是當前需要優先克服的挑戰。高溶解度、高電池電壓、動力學反應快、高穩定性和低成本都是 NAORFBs活性材料的理想特性,且陽極電解液和陰極電解液的特性對於電池性能都至關重要,不過如今,市面上僅有低氧化還原電位的陽極電解液,高氧化還原電位的陰極電解液十分稀少。
N-取代吩噻嗪被認為是有應用潛力的NAORFBs 陰極電解液,除了易於獲得之外,電化學和物理化學性質容易修飾,在不帶電和帶電狀態下都很穩定,溶解在二甲基甲醯胺(Dimethylformamide, DMF)和碳酸酯溶劑等有機溶劑中,與常用的輔助鹽類沒有強烈的交互作用。 N-烷基吩噻嗪可以發生可逆的氧化還原反應,故非常適合用於液流電池。兩個苯基以及連接在活性中心N原子上的烷基、苯基或其他有機部分的電子釋放和屏蔽作用使N-烷基吩噻嗪自由基陽離子具有良好的穩定性。利用空間位阻方法調節吩噻嗪的氧化還原電位和自由基穩定性。 N-異丁基吩噻嗪是由低成本前驅物、吩噻嗪和異丁基溴一步合成的。 N-異丁基吩噻嗪的穩定性是透過 500 個循環的循環伏安法測試和 100 個循環的液流電池充放電測試來評估。 TEABF4/DMF 中預先混合的N-異丁基吩噻嗪和BTD 表現出良好的穩定性,特別是在進行500 循環循環伏安法時沒有明顯的衰減,並且在100循環中液流電池性能幾乎穩定,在100 次循環後保留67.4% 的放電電容量,並且具有中等的電化學效率。吩噻嗪被認為是潛在的陰極電解質,因為可以透過在對氮的的修飾來調節溶解度、穩定性、氧化還原電位和二電子轉移的利用。


Abstract
Redox flow batteries (RFBs) are a promising technology for large-scale static electrical energy storage because of detached energy and power modulation, allowing for more efficient integration of intermittent energy sources from sun and wind. The specific energy of traditional RFBs is restricted because of the electrolysis of water when the potential range exceeds nearly 1.23 V. Non-aqueous organic redox flow batteries (NAORFBs) can achieve high cell potential and thus high energy density, which is impossible in aqueous electrolytes, as well contain naturally abundant elements (H, C, N, O, S). However, NAORFBs are yet in their early stages of development and face a number of problems. Degradation of the redox-active species, lack of appropriate membrane (separator), high viscosity of organic solvents are the major problems of NAORFBs. High solubility, large cell voltage, fast kinetics, high stability, and low cost are all desirable characteristics in electroactive materials for NAORFBs. The characteristics of both anolytes and catholytes are equally important for the battery performance. Nowadays, there are many anolytes with low redox potential available commercially, but very few or no catholytes with high redox potentials are easily accessible for application in NAORFBs.
N-substituted phenothiazines are thought to be promising catholytes for NAORFBs since they can be obtained easily and the electrochemical and physicochemical properties can easily be modified, stable both in uncharged and in charged states, dissolve in organic solvents like DMF and carbonate solvents, the interactions with commonly used supporting salts are not so strong, environmentally friendly. N-alkylphenothiazines can undergo reversible redox reactions making them ideal for utilization in flow batteries. The electron releasing and shielding effects of two phenyl groups and an alkyl, phenyl or other organic moiety attached to the active center, N-atom, give N-alkylphenothiazine radical cation good stability. The redox potentials and radical stability of phenothiazine were tuned by making use of steric hindrance approach. N-isobutylphenothiazine was synthesized from low cost precursors, phenothiazine and isobutyl bromide in a single step process. The stability of N-isobutylphenothiazine is accessed with repeated CV tests for 500 cycles and flow battery test for 100 cycles. Premixed N-isobutylphenothiazine and BTD in TEABF4/DMF demonstrated good stability, particularly when 500 CV cycles are performed without significant peak decay as well as with nearly stable flow battery performance for 100 cycles, retaining 67.4% capacity after 100 cycles and with moderate electrochemical efficiencies. Phenothiazines are regarded as potential catholytes since the solubility, stability, redox potentials and the utilization of two electrons could be modulated by appending appropriate moiety, particularly at positions para to nitrogen.

Table of Contents 中文摘要 ix Abstract xi Acknowledgement xiii Acronyms xv Table of Contents xvii List of Figures xxi List of Schemes xxv Lists of Tables xxvii Chapter 1: Introduction 1 1.1 Background 1 1.2 Research Objectives 3 1.3 The Dissertation General Framework 4 Chapter 2: Literature Review 5 2.1 Electrochemical Energy Conversion and Storage (EECS) Systems 5 2.1.1 Batteries 10 2. 1.2 Fuel Cells 11 2.1.2 Supercapacitors 13 2.1.3 Redox Flow Batteries (RFBs) 14 2.1.3.1 Aqueous Redox Flow Batteries (ARFBs) 20 2.1.3.2 Nonaqueous Organic Redox Flow Batteries (NAORFBs) 21 2.1.3.2.1 Organic Redox-active Materials 21 2.1.3.2.1.1 Carbonyl Compounds 22 2.1.4.2.1.2 Fused Aromatic Rings 23 2.1.3.2.1.2 Stable Radicals 29 2.1.3.2.2 Electrodes for Nonaqueous Redox Flow Batteries 34 2.1.3.2.3 Supporting Salts and Solvents for Nonaqueous Organic Redox Flow Batteries 35 2.1.3.2.4 Membrane/Separator for Nonaqueous Organic Redox Flow Batteries 37 Chapter 3: Motivation 39 Chapter 4: Experimental Section 40 4.1 Materials 40 4.2 Synthesis Procedure 41 4.3 Characterizations with FTIR, NMR and MS 42 4.4 Electrochemical Characterizations 42 4.5 Solubility Test 45 4.6 Stability Test 45 Chapter 5: Results and Discussion 47 5.1 N-methylphenothiazine Catholyte for Nonaqueous Organic Redox Flow Batteries 47 5.1.1 Cyclic Voltammetry (CV) Tests 47 5.1.2 Linear Sweep Voltammetry (LSV) 54 5.1.3 Flow cell cycling performance 58 5.1.4 Stability tests with FTIR and UV-vis spectroscopies 61 5.2 N-isobutylphenothiazine Catholyte for Nonaqueous Organic Redox Flow Batteries 65 5.2.1 Introduction 65 5.2.2 Characterization of Synthesized iBuPT 67 5.2.2.1 UV-vis characterization 67 5.2.2.2 Characterization with FTIR 68 5.2.2.3 Characterization with 1H NMR 71 5.2.2.4 High-resolution mass spectrum of iBuPT 73 5.2.3 Electrochemical properties 74 5.2.3.1 CV curves 75 5.2.3.2 Determination of Kinetic Parameters 81 5.2.3.3 Battery Tests 83 5.2.3.4 CV and UV-vis curves comparisons for stability tests 85 Chapter 6: Conclusion and Future Perspectives 88 References 91

References
[1] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chemical reviews, 111 (2011) 3577-3613.
[2] J. Rugolo, M.J. Aziz, Electricity storage for intermittent renewable sources. Energy & Environmental Science, 5 (2012) 7151-7160.
[3] C.J. Barnhart, M. Dale, A.R. Brandt, S.M. Benson, The energetic implications of curtailing versus storing solar-and wind-generated electricity. Energy & Environmental Science, 6 (2013) 2804-2810.
[4] W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Recent progress in redox flow battery research and development. Advanced Functional Materials, 23 (2013) 970-986.
[5] G.L. Soloveichik, Flow batteries: current status and trends. Chemical reviews, 115 (2015) 11533-11558.
[6] J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Redox‐flow batteries: from metals to organic redox‐active materials. Angewandte Chemie International Edition, 56 (2017) 686-711.
[7] Y. Ding, C. Zhang, L. Zhang, Y. Zhou, G. Yu, Pathways to widespread applications: development of redox flow batteries based on new chemistries. Chem, 5 (2019) 1964-1987.
[8] Y. Ding, C. Zhang, L. Zhang, Y. Zhou, G. Yu, Molecular engineering of organic electroactive materials for redox flow batteries. Chemical Society Reviews, 47 (2018) 69-103.
[9] E.V. Carino, J. Staszak-Jirkovsky, R.S. Assary, L.A. Curtiss, N.M. Markovic, F.R. Brushett, Tuning the stability of organic active materials for nonaqueous redox flow batteries via reversible, electrochemically mediated Li+ coordination. Chemistry of Materials, 28 (2016) 2529-2539.
[10] K. Gong, Q. Fang, S. Gu, S.F.Y. Li, Y. Yan, Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy & Environmental Science, 8 (2015) 3515-3530.
[11] A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications, John Wiley & Sons, 2022.
[12] C. Zhang, Z. Niu, S. Peng, Y. Ding, L. Zhang, X. Guo, Y. Zhao, G. Yu, Phenothiazine‐based organic catholyte for high‐capacity and long‐life aqueous redox flow batteries. Advanced Materials, 31 (2019) 1901052.
[13] J. Huang, W. Duan, J. Zhang, I.A. Shkrob, R.S. Assary, B. Pan, C. Liao, Z. Zhang, X. Wei, L. Zhang, Substituted thiadiazoles as energy-rich anolytes for nonaqueous redox flow cells. Journal of Materials Chemistry A, 6 (2018) 6251-6254.
[14] D. Xu, C. Zhang, Y. Zhen, Y. Li, Liquid Nitrobenzene-Based Anolyte Materials for High-Current and-Energy-Density Nonaqueous Redox Flow Batteries. ACS Applied Materials & Interfaces, 13 (2021) 35579-35584.
[15] C.S. Sevov, R.E. Brooner, E. Chénard, R.S. Assary, J.S. Moore, J. Rodríguez-López, M.S. Sanford, Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries. Journal of the American Chemical Society, 137 (2015) 14465-14472.
[16] E.I. Romadina, D.S. Komarov, K.J. Stevenson, P.A. Troshin, New phenazine based anolyte material for high voltage organic redox flow batteries. Chemical Communications, 57 (2021) 2986-2989.
[17] X. Wang, J. Chai, A. Lashgari, J.J. Jiang, Azobenzene‐Based Low‐Potential Anolyte for Nonaqueous Organic Redox Flow Batteries. ChemElectroChem, 8 (2021) 83-89.
[18] L. Zhang, J. Zhang, X. Wei, F.R. Brushett, I.A. Shkrob, in: ECS Meeting Abstracts, IOP Publishing, 2019, pp. 445.
[19] B. Hu, M. Hu, J. Luo, T.L. Liu, A Stable, Low Permeable TEMPO Catholyte for Aqueous Total Organic Redox Flow Batteries. Advanced Energy Materials, 12 (2022) 2102577.
[20] J. Yuan, C. Zhang, Y. Zhen, Y. Zhao, Y. Li, Enhancing the performance of an all-organic non-aqueous redox flow battery. J. Power Sources, 443 (2019) 227283.
[21] B.G. Tegegne, D.M. Kabtamu, Y.-T. Ou, G.-C. Chen, Z.-J. Huang, N.-Y. Hsu, H.-H. Ku, Y.-M. Wang, C.-H. Wang, N-Isobutylphenothiazine as a reversible and stable catholyte in non-aqueous organic redox flow batteries. Journal of Energy Storage, 73 (2023) 109201.
[22] J.A. Kowalski, L. Su, J.D. Milshtein, F.R. Brushett, Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries. Current Opinion in Chemical Engineering, 13 (2016) 45-52.
[23] A.M.M. Rawashdeh, Computing the Redox Potentials of Phenothiazine and N-methylphenothiazine. ABHATH AL-YARMOUK, (2005).
[24] M.S. Whittingham, Materials challenges facing electrical energy storage. Mrs Bulletin, 33 (2008) 411-419.
[25] T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11 (2018) 2696-2767.
[26] A.J. Bard, L.R. Faulkner, Fundamentals and applications. Electrochemical methods, 2 (2001) 580-632.
[27] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chemical reviews, 104 (2004) 4245-4270.
[28] P. Atkins, P.W. Atkins, J. de Paula, Atkins' physical chemistry, Oxford university press, 2014.
[29] Y. Ko, H. Park, B. Kim, J.S. Kim, K. Kang, Redox mediators: a solution for advanced lithium–oxygen batteries. Trends in Chemistry, 1 (2019) 349-360.
[30] W. Wang, X. Wei, D. Choi, X. Lu, G. Yang, C. Sun, Electrochemical cells for medium-and large-scale energy storage: fundamentals, in: Advances in batteries for medium and large-scale energy storage, Elsevier, 2015, pp. 3-28.
[31] C. Roth, J. Noack, M. Skyllas-Kazacos, Flow Batteries: From Fundamentals to Applications, John Wiley & Sons, 2022.
[32] W.M. Sudduth, The voltaic pile and electro-chemical theory in 1800. Ambix, 27 (1980) 26-35.
[33] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science, 334 (2011) 928-935.
[34] J. Janata, Principles of chemical sensors, Springer Science & Business Media, 2010.
[35] Y. Wang, C. Wöll, Chemical reactions on metal oxide surfaces investigated by vibrational spectroscopy. Surface science, 603 (2009) 1589-1599.
[36] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Advanced materials, 22 (2010) E28-E62.
[37] S.-L. Li, Q. Xu, Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science, 6 (2013) 1656-1683.
[38] R. Reisfeld, Sol gel processed lasers. Sakka, S., Sol-Gel Technology Handbook, 3 (2004) 239-261.
[39] F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann, Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environmental science & technology, 40 (2006) 5193-5199.
[40] N.H. Behling, Chapter 2—Fuel Cells and the Challenges Ahead. Fuel Cells, (2013) 7-36.
[41] L. Guo, P. Hu, H. Wei, Development of supercapacitor hybrid electric vehicle. Journal of Energy Storage, 65 (2023) 107269.
[42] L.H. Thaller, in: 9th Intersociety energy conversion engineering conference, 1974, pp. 924-928.
[43] M. Li, Z. Rhodes, J.R. Cabrera-Pardo, S.D. Minteer, Recent advancements in rational design of non-aqueous organic redox flow batteries. Sustainable Energy & Fuels, 4 (2020) 4370-4389.
[44] B. Hu, T.L. Liu, Two electron utilization of methyl viologen anolyte in nonaqueous organic redox flow battery. Journal of energy chemistry, 27 (2018) 1326-1332.
[45] T. Nguyen, R.F. Savinell, Flow batteries. The Electrochemical Society Interface, 19 (2010) 54.
[46] L. Arenas, C.P. De León, F. Walsh, Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. Journal of Energy Storage, 11 (2017) 119-153.
[47] J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, The chemistry of redox‐flow batteries. Angewandte Chemie International Edition, 54 (2015) 9776-9809.
[48] W. Lu, X. Li, H. Zhang, The next generation vanadium flow batteries with high power density–a perspective. Physical Chemistry Chemical Physics, 20 (2018) 23-35.
[49] P. Leung, X. Li, C.P. De León, L. Berlouis, C.J. Low, F.C. Walsh, Progress in redox flow batteries, remaining challenges and their applications in energy storage. Rsc Advances, 2 (2012) 10125-10156.
[50] J. Chai, A. Lashgari, J.J. Jiang, Electroactive materials for next-generation redox flow batteries: from inorganic to organic, in: Clean Energy Materials, ACS Publications, 2020, pp. 1-47.
[51] M. Skyllas-Kazacos, Novel vanadium chloride/polyhalide redox flow battery. Journal of Power Sources, 124 (2003) 299-302.
[52] L. da Silva Lima, M. Quartier, A. Buchmayr, D. Sanjuan-Delmás, H. Laget, D. Corbisier, J. Mertens, J. Dewulf, Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustainable Energy Technologies and Assessments, 46 (2021) 101286.
[53] E. Sánchez-Díez, E. Ventosa, M. Guarnieri, A. Trovò, C. Flox, R. Marcilla, F. Soavi, P. Mazur, E. Aranzabe, R. Ferret, Redox flow batteries: Status and perspective towards sustainable stationary energy storage. Journal of Power Sources, 481 (2021) 228804.
[54] X. Xing, Q. Liu, W. Xu, W. Liang, J. Liu, B. Wang, J.P. Lemmon, All-liquid electroactive materials for high energy density organic flow battery. ACS Applied Energy Materials, 2 (2019) 2364-2369.
[55] W. Wang, L. Li, Z. Nie, B. Chen, Q. Luo, Y. Shao, X. Wei, F. Chen, G.-G. Xia, Z. Yang, A new hybrid redox flow battery with multiple redox couples. Journal of Power Sources, 216 (2012) 99-103.
[56] Y.Y. Lai, X. Li, Y. Zhu, Polymeric active materials for redox flow battery application. ACS Applied Polymer Materials, 2 (2020) 113-128.
[57] Z. Li, T. Jiang, M. Ali, C. Wu, W. Chen, Recent progress in organic species for redox flow batteries. Energy Storage Materials, 50 (2022) 105-138.
[58] J. Luo, B. Hu, M. Hu, Y. Zhao, T.L. Liu, Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Letters, 4 (2019) 2220-2240.
[59] J. Cao, J. Tian, J. Xu, Y. Wang, Organic flow batteries: recent progress and perspectives. Energy & Fuels, 34 (2020) 13384-13411.
[60] B. Li, J. Liu, Progress and directions in low-cost redox-flow batteries for large-scale energy storage. National Science Review, 4 (2017) 91-105.
[61] S. Kim, M. Vijayakumar, W. Wang, J. Zhang, B. Chen, Z. Nie, F. Chen, J. Hu, L. Li, Z. Yang, Chloride supporting electrolytes for all-vanadium redox flow batteries. Physical Chemistry Chemical Physics, 13 (2011) 18186-18193.
[62] X. Wei, W. Pan, W. Duan, A. Hollas, Z. Yang, B. Li, Z. Nie, J. Liu, D. Reed, W. Wang, Materials and systems for organic redox flow batteries: status and challenges. ACS Energy Letters, 2 (2017) 2187-2204.
[63] Z. Liang, R.K. Jha, T.M. Suduwella, N.H. Attanayake, Y. Wang, W. Zhang, C. Cao, A.P. Kaur, J. Landon, S.A. Odom, A prototype of high-performance two-electron non-aqueous organic redox flow battery operated at− 40° C. Journal of Materials Chemistry A, 10 (2022) 24685-24693.
[64] L. Tang, P. Leung, Q. Xu, M.R. Mohamed, S. Dai, X. Zhu, C. Flox, A.A. Shah, Future perspective on redox flow batteries: aqueous versus nonaqueous electrolytes. Current Opinion in Chemical Engineering, 37 (2022) 100833.
[65] Y. Zheng, Á.P. Ramos, H. Wang, G. Álvarez, A. Ridruejo, J. Peng, Nonaqueous Organic Redox Active Materials for Bicontinuous Microemulsion-based Redox Flow Battery. Materials Today Energy, (2023) 101286.
[66] A.W. Lantz, S.A. Shavalier, W. Schroeder, P.G. Rasmussen, Evaluation of an aqueous biphenol-and anthraquinone-based electrolyte redox flow battery. ACS Applied Energy Materials, 2 (2019) 7893-7902.
[67] Y. Xu, Y. Wen, J. Cheng, Y. Yanga, Z. Xie, G. Cao, in: 2009 World Non-Grid-Connected Wind Power and Energy Conference, IEEE, 2009, pp. 1-4.
[68] P.S. Guin, S. Das, P. Mandal, Electrochemical reduction of quinones in different media: a review. International Journal of Electrochemistry, 2011 (2011).
[69] P. Acker, L. Rzesny, C.F. Marchiori, C.M. Araujo, B. Esser, π‐conjugation enables ultra‐high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode‐active battery materials. Advanced Functional Materials, 29 (2019) 1906436.
[70] R. Faust, E.D. Glendening, A. Streitwieser, K.P.C. Vollhardt, Ab initio study of. sigma.-and. pi.-effects in benzenes fused to four-membered rings: rehybridization, delocalization, and antiaromaticity. Journal of the American Chemical Society, 114 (1992) 8263-8268.
[71] K. Hernandez-Burgos, S.E. Burkhardt, G.G. Rodríguez-Calero, R.G. Hennig, H.D. Abruna, Theoretical studies of carbonyl-based organic molecules for energy storage applications: the heteroatom and substituent effect. The Journal of Physical Chemistry C, 118 (2014) 6046-6051.
[72] J.D. Milshtein, A.P. Kaur, M.D. Casselman, J.A. Kowalski, S. Modekrutti, P.L. Zhang, N.H. Attanayake, C.F. Elliott, S.R. Parkin, C. Risko, High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries. Energy & Environmental Science, 9 (2016) 3531-3543.
[73] L.M. Sigmund, F. Ebner, C. Jöst, J. Spengler, N. Gönnheimer, D. Hartmann, L. Greb, An Air‐Stable, Neutral Phenothiazinyl Radical with Substantial Radical Stabilization Energy. Chemistry–A European Journal, 26 (2020) 3152-3156.
[74] R. Guilmin, F. Alloin, F. Molton, J.-C. Leprêtre, Chemical modification of N-methylphenothiazine to lead to interesting and potential organic material for lithium battery. Electrochimica Acta, 232 (2017) 182-191.
[75] H.M. Gordon, Phenothiazine as an anthelmintic. Australian Veterinary Journal, 21 (1945) 90-95.
[76] A.P. Kulkarni, P.-T. Wu, T.W. Kwon, S.A. Jenekhe, Phenothiazine-phenylquinoline donor− acceptor molecules: Effects of structural isomerism on charge transfer photophysics and electroluminescence. The Journal of Physical Chemistry B, 109 (2005) 19584-19594.
[77] J. Chai, A. Lashgari, Z. Cao, C.K. Williams, X. Wang, J. Dong, J.J. Jiang, PEGylation-enabled extended cyclability of a non-aqueous redox flow battery. ACS applied materials & interfaces, 12 (2020) 15262-15270.
[78] A.P. Kaur, K.C. Harris, N.H. Attanayake, Z. Liang, S.R. Parkin, M.H. Tang, S.A. Odom, Quantifying environmental effects on the solution and solid-state stability of a phenothiazine radical cation. Chemistry of Materials, 32 (2020) 3007-3017.
[79] E.H. Discekici, N.J. Treat, S.O. Poelma, K.M. Mattson, Z.M. Hudson, Y. Luo, C.J. Hawker, J.R. de Alaniz, A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations. Chemical Communications, 51 (2015) 11705-11708.
[80] J. Dahn, J. Jiang, L. Moshurchak, C. Buhrmester, R.L. Wang, The drugstore Li-ion cell. The Electrochemical Society Interface, 14 (2005) 27.
[81] J.A. Kowalski, M.D. Casselman, A.P. Kaur, J.D. Milshtein, C.F. Elliott, S. Modekrutti, N.H. Attanayake, N. Zhang, S.R. Parkin, C. Risko, A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries. Journal of Materials Chemistry A, 5 (2017) 24371-24379.
[82] S.B. Beil, M.B. Wonink, B.L. Feringa, Incorporating sulfur into redox-active reagents and materials. Tetrahedron, (2023) 133262.
[83] D.M. Pham, H. Oji, S. Yagi, S. Ogawa, A. Katayama, Sulfur in humin as a redox-active element for extracellular electron transfer. Geoderma, 408 (2022) 115580.
[84] C.F. Elliott, K.E. Fraser, S.A. Odom, C. Risko, Steric Manipulation as a Mechanism for Tuning the Reduction and Oxidation Potentials of Phenothiazines. The Journal of Physical Chemistry A, 125 (2021) 272-278.
[85] D.H. Aue, Carbocations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1 (2011) 487-508.
[86] K.A. Narayana, M.D. Casselman, C.F. Elliott, S. Ergun, S.R. Parkin, C. Risko, S.A. Odom, N‐substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium‐ion batteries. ChemPhysChem, 16 (2015) 1179-1189.
[87] M.D. Casselman, C.F. Elliott, S. Modekrutti, P.L. Zhang, S.R. Parkin, C. Risko, S.A. Odom, Beyond the Hammett Effect: Using Strain to Alter the Landscape of Electrochemical Potentials. ChemPhysChem, 18 (2017) 2142-2146.
[88] B. Liu, C.W. Tang, W. Wei, C. Zhang, G. Jia, T. Zhao, Developing terpyridine-based metal complexes for non-aqueous redox flow batteries. Energy Storage Materials, 60 (2023) 102808.
[89] F. Zhong, M. Yang, M. Ding, C. Jia, Organic electroactive molecule-based electrolytes for redox flow batteries: status and challenges of molecular design. Frontiers in Chemistry, 8 (2020) 451.
[90] L. Zhang, Y. Qian, R. Feng, Y. Ding, X. Zu, C. Zhang, X. Guo, W. Wang, G. Yu, Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries. Nature communications, 11 (2020) 3843.
[91] Y. Yamazaki, J. Naganuma, H. Gotoh, A theoretical, dynamical evaluation method of the steric hindrance in nitroxide radicals using transition states of model reactions. Scientific Reports, 9 (2019) 1-11.
[92] H. Song, K. Tian, Z. Fang, C. Guan, H. Jiang, M. Lu, M. Zhang, S. Zhuang, H. Wei, D. Wei, Steric-hindrance effect and self-sacrificing template behavior induced PDA@ SnO2-QDs/N-doped carbon hollow nanospheres: Enhanced structural stability and reaction kinetics for long-cyclic Li-ion half/full batteries. Journal of Colloid and Interface Science, 631 (2023) 214-223.
[93] L. Chen, Y. Li, X. Wang, J. Wu, Y. Ding, S.-B. Ren, L. Zhang, Z. Xu, B. Chen, D.-M. Han, Conjugated microporous polyimide cathodes for sodium/lithium-ion batteries with ultra-long cycling performance. Chemical Engineering Journal, 464 (2023) 142658.
[94] Y. Yao, W. Ma, J. Lei, Z. Wang, Y.-C. Lu, L. Liu, Nonionic oligo (ethylene glycol)-substituted viologen negolytes for aqueous organic redox flow batteries. Journal of Materials Chemistry A, (2023).
[95] D. Xu, C. Zhang, Y. Li, Molecular engineering the naphthalimide compounds as High-Capacity anolyte for nonaqueous redox flow batteries. Chemical Engineering Journal, 439 (2022) 135766.
[96] N. Daub, R.A. Janssen, K.H. Hendriks, Imide-based multielectron anolytes as high-performance materials in nonaqueous redox flow batteries. ACS Applied Energy Materials, 4 (2021) 9248-9257.
[97] X. Xing, Q. Liu, B. Wang, J.P. Lemmon, W.Q. Xu, A low potential solvent-miscible 3-methylbenzophenone anolyte material for high voltage and energy density all-organic flow battery. Journal of power sources, 445 (2020) 227330.
[98] Y. Yan, L. Zhang, R. Walser-Kuntz, D.B. Vogt, M.S. Sigman, G. Yu, M.S. Sanford, Benzotriazoles as Low-Potential Anolytes for Non-aqueous Redox Flow Batteries. Chemistry of Materials, 34 (2022) 10594-10605.
[99] Y. Yan, R. Walser-Kuntz, M.S. Sanford, Targeted Optimization of Phenoxazine Redox Center for Nonaqueous Redox Flow Batteries. ACS Materials Letters, 4 (2022) 733-739.
[100] Y. Zhao, J. Zhang, G. Agarwal, Z. Yu, R.E. Corman, Y. Wang, L.A. Robertson, Z. Shi, H.A. Doan, R.H. Ewoldt, TEMPO allegro: liquid catholyte redoxmers for nonaqueous redox flow batteries. Journal of Materials Chemistry A, 9 (2021) 16769-16775.
[101] G. Kwon, K. Lee, J. Yoo, S. Lee, J. Kim, Y. Kim, J.E. Kwon, S.Y. Park, K. Kang, Highly persistent triphenylamine-based catholyte for durable organic redox flow batteries. Energy Storage Materials, 42 (2021) 185-192.
[102] J. Huang, L. Cheng, R.S. Assary, P. Wang, Z. Xue, A.K. Burrell, L.A. Curtiss, L. Zhang, Liquid catholyte molecules for nonaqueous redox flow batteries. Advanced Energy Materials, 5 (2015) 1401782.
[103] G. Kwon, S. Lee, J. Hwang, H.-S. Shim, B. Lee, M.H. Lee, Y. Ko, S.-K. Jung, K. Ku, J. Hong, Multi-redox molecule for high-energy redox flow batteries. Joule, 2 (2018) 1771-1782.
[104] L.F. Arenas, C.P. de León, F.C. Walsh, Redox flow batteries for energy storage: their promise, achievements and challenges. Current Opinion in Electrochemistry, 16 (2019) 117-126.
[105] R. Ye, D. Henkensmeier, S.J. Yoon, Z. Huang, D.K. Kim, Z. Chang, S. Kim, R. Chen, Redox flow batteries for energy storage: a technology review. Journal of Electrochemical Energy Conversion and Storage, 15 (2018).
[106] J. Yuan, Z.-Z. Pan, Y. Jin, Q. Qiu, C. Zhang, Y. Zhao, Y. Li, Membranes in non-aqueous redox flow battery: A review. Journal of Power Sources, 500 (2021) 229983.
[107] J. Zhang, J. Huang, L.A. Robertson, R.S. Assary, I.A. Shkrob, L. Zhang, Elucidating factors controlling long-term stability of radical anions for negative charge storage in nonaqueous redox flow batteries. The Journal of Physical Chemistry C, 122 (2018) 8116-8127.
[108] X. Wei, W. Xu, J. Huang, L. Zhang, E. Walter, C. Lawrence, M. Vijayakumar, W.A. Henderson, T. Liu, L. Cosimbescu, Radical compatibility with nonaqueous electrolytes and its impact on an all‐organic redox flow battery. Angewandte Chemie International Edition, 54 (2015) 8684-8687.
[109] L. Qiao, H. Zhang, W. Lu, Q. Dai, X. Li, Advanced porous membranes with tunable morphology regulated by ionic strength of nonsolvent for flow battery. ACS applied materials & interfaces, 11 (2019) 24107-24113.
[110] Z. Liang, N.H. Attanayake, K.V. Greco, B.J. Neyhouse, J.L. Barton, A.P. Kaur, W.L. Eubanks, F.R. Brushett, J. Landon, S.A. Odom, Comparison of separators vs membranes in nonaqueous redox flow battery electrolytes containing small molecule active materials. ACS Applied Energy Materials, 4 (2021) 5443-5451.
[111] X. Wei, W. Duan, J. Huang, L. Zhang, B. Li, D. Reed, W. Xu, V. Sprenkle, W. Wang, A high-current, stable nonaqueous organic redox flow battery. ACS Energy Letters, 1 (2016) 705-711.
[112] J. Moutet, J.M. Veleta, T.L. Gianetti, Symmetric, robust, and high-voltage organic redox flow battery model based on a helical carbenium ion electrolyte. ACS Applied Energy Materials, 4 (2020) 9-14.
[113] N. Feng, X. Mu, X. Zhang, P. He, H. Zhou, Intensive study on the catalytical behavior of N-methylphenothiazine as a soluble mediator to oxidize the Li2O2 cathode of the Li–O2 battery. ACS applied materials & interfaces, 9 (2017) 3733-3739.
[114] Y. Yan, D.B. Vogt, T.P. Vaid, M.S. Sigman, M.S. Sanford, Development of High Energy Density Diaminocyclopropenium‐Phenothiazine Hybrid Catholytes for Non‐Aqueous Redox Flow Batteries. Angewandte Chemie, 133 (2021) 27245-27251.
[115] S. Zhao, J. Kang, Y. Du, J. Kang, X. Zhao, Y. Xu, R. Chen, Q. Wang, X. Shi, An efficient ultrasound‐assisted synthesis of N‐alkyl derivatives of carbazole, indole, and phenothiazine. Journal of Heterocyclic Chemistry, 51 (2014) 683-689.
[116] F.A. Al-Zahrani, M.N. Arshad, A.M. Asiri, T. Mahmood, M.A. Gilani, R.M. El-Shishtawy, Synthesis and structural properties of 2-((10-alkyl-10H-phenothiazin-3-yl) methylene) malononitrile derivatives; a combined experimental and theoretical insight. Chemistry Central Journal, 10 (2016) 1-15.
[117] J. Chai, A. Lashgari, X. Wang, C.K. Williams, All-PEGylated redox-active metal-free organic molecules in non-aqueous redox flow battery. Journal of Materials Chemistry A, 8 (2020) 15715-15724.
[118] M. Krstić, S.P. Sovilj, S. Borozan, M. Rancić, J. Poljarević, S. Grgurić-Šipka, N-alkylphenothiazines-synthesis, structure and application as ligands in metal complexes. Hemijska industrija, 70 (2016) 461-471.
[119] J. Liu, W. Zhou, R. Zhao, Z. Yang, W. Li, D. Chao, S.-Z. Qiao, D. Zhao, Sulfur-based aqueous batteries: electrochemistry and strategies. Journal of the American Chemical Society, 143 (2021) 15475-15489.
[120] B.G. Tegegne, D.M. Kabtamu, Y.-Z. Li, Y.-T. Ou, Z.-J. Huang, N.-Y. Hsu, H.-H. Ku, Y.-M. Wang, C.-H. Wang, N-methylphenothiazine as stable and low-cost catholyte for nonaqueous organic redox flow battery. Journal of Energy Storage, 61 (2023) 106753.
[121] N.H. Attanayake, T.M. Suduwella, Y. Yan, A.P. Kaur, Z. Liang, M.S. Sanford, S.A. Odom, Comparative study of organic radical cation stability and coulombic efficiency for nonaqueous redox flow battery applications. The Journal of Physical Chemistry C, 125 (2021) 14170-14179.
[122] H. Chen, Y. Zhou, Y.-C. Lu, Lithium–organic nanocomposite suspension for high-energy-density redox flow batteries. ACS Energy Letters, 3 (2018) 1991-1997.
[123] K. Taylor, H. Holtby, Methylene blue revisited: Management of hypotension in a pediatric patient with bacterial endocarditis. The Journal of thoracic and cardiovascular surgery, 130 (2005) 566.
[124] D. Xu, C. Zhang, Y. Zhen, Y. Zhao, Y. Li, A high-rate nonaqueous organic redox flow battery. Journal of Power Sources, 495 (2021) 229819.
[125] L. Zhang, Y. Qian, R. Feng, Y. Ding, X. Zu, C. Zhang, X. Guo, W. Wang, G. Yu, Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries. Nat. Commun., 11 (2020) 1-11.
[126] J. Zhang, J. Huang, W. Duan, J.A. Kowalski, B. Hu, I.A. Shkrob, R. Assary, F.R. Brushett, X. Wei, L. Zhang, in: Electrochemical Society Meeting Abstracts 233, The Electrochemical Society, Inc., 2018, pp. 230-230.
[127] H. Wang, S.Y. Sayed, E.J. Luber, B.C. Olsen, S.M. Shirurkar, S. Venkatakrishnan, U.M. Tefashe, A.K. Farquhar, E.S. Smotkin, R.L. McCreery, Redox flow batteries: how to determine electrochemical kinetic parameters. ACS nano, 14 (2020) 2575-2584.
[128] W. Duan, J. Huang, J.A. Kowalski, I.A. Shkrob, M. Vijayakumar, E. Walter, B. Pan, Z. Yang, J.D. Milshtein, B. Li, “Wine-Dark Sea” in an organic flow battery: storing negative charge in 2, 1, 3-benzothiadiazole radicals leads to improved cyclability. ACS Energy Letters, 2 (2017) 1156-1161.
[129] L. Beaulieu, E. Logan, K. Gering, J. Dahn, An automated system for performing continuous viscosity versus temperature measurements of fluids using an Ostwald viscometer. Review of Scientific Instruments, 88 (2017) 095101.
[130] N.H. Attanayake, Z. Liang, Y. Wang, A.P. Kaur, S.R. Parkin, J.K. Mobley, R.H. Ewoldt, J. Landon, S.A. Odom, Dual function organic active materials for nonaqueous redox flow batteries. Materials Advances, 2 (2021) 1390-1401.
[131] H.-s. Kim, K.-J. Lee, Y.-K. Han, J.H. Ryu, S.M. Oh, A comparative study on the solubility and stability of p-phenylenediamine-based organic redox couples for non-aqueous flow batteries. Journal of Power Sources, 348 (2017) 264-269.
[132] D.-Y. Wang, W. Guo, Y. Fu, Organosulfides: an emerging class of cathode materials for rechargeable lithium batteries. Accounts of Chemical Research, 52 (2019) 2290-2300.
[133] R.M. Silverstein, G.C. Bassler, Spectrometric identification of organic compounds. Journal of Chemical Education, 39 (1962) 546.
[134] S. Ergun, C.F. Elliott, A.P. Kaur, S.R. Parkin, S.A. Odom, Overcharge performance of 3, 7-disubstituted N-ethylphenothiazine derivatives in lithium-ion batteries. Chem. Commun., 50 (2014) 5339-5341.
[135] H. Yoo, S. Furumaki, J. Yang, J.-E. Lee, H. Chung, T. Oba, H. Kobayashi, B. Rybtchinski, T.M. Wilson, M.R. Wasielewski, Excitonic coupling in linear and trefoil trimer perylenediimide molecules probed by single-molecule spectroscopy. The Journal of Physical Chemistry B, 116 (2012) 12878-12886.
[136] J.S. Yuan, C.J. Zhang, Y.H. Zhen, Y.C. Zhao, Y.D. Li, Enhancing the performance of an all-organic non-aqueous redox flow battery. Journal of Power Sources, 443 (2019) 227283.
[137] J.N. Domínguez, S. López, J. Charris, L. Iarruso, G. Lobo, A. Semenov, J.E. Olson, P.J. Rosenthal, Synthesis and antimalarial effects of phenothiazine inhibitors of a Plasmodium falciparum cysteine protease. Journal of medicinal chemistry, 40 (1997) 2726-2732.
[138] L. Moshurchak, C. Buhrmester, R. Wang, J. Dahn, Comparative studies of three redox shuttle molecule classes for overcharge protection of LiFePO4-based Li-ion cells. Electrochimica Acta, 52 (2007) 3779-3784.
[139] A.P. Kaur, C.F. Elliott, S. Ergun, S.A. Odom, Overcharge Performance of 3, 7-Bis (trifluoromethyl)-N-ethylphenothiazine at High Concentration in Lithium-Ion Batteries. Journal of The Electrochemical Society, 163 (2015) A1.
[140] W.D. Castro-Godoy, J.E. Argüello, M. Martinelli, D.A. Caminos, Unimolecular Nucleophilic Substitution (SN1): Structural Reactivity Evidenced by Colored Acid–Base Indicators. Journal of Chemical Education, 95 (2018) 1827-1831.
[141] M.D. Casselman, A.P. Kaur, K.A. Narayana, C.F. Elliott, C. Risko, S.A. Odom, The fate of phenothiazine-based redox shuttles in lithium-ion batteries. Physical Chemistry Chemical Physics, 17 (2015) 6905-6912.
[142] A. Balter, W. Nowak, P. Milart, J. Sepioł, Steric effects in the electronic spectra of the 3, 5-diarylaminobenzene derivatives. Zeitschrift für Naturforschung A, 41 (1986) 1311-1314.
[143] L.D. Field, H.L. Li, A.M. Magill, Organic structures from spectra, John Wiley & Sons, 2020.
[144] N.S.D. Chart, Cambridge Isotope Laboratories. Inc., Web: www. isotope. com, (2009).
[145] M. Zhou, L. Mao, Y.-F. Niu, X.-L. Zhao, X. Shi, H.-B. Yang, Triphenylamines consisting of bulky 3, 5-di‑tert‑butyl‑4-anisyl group: Synthesis, redox properties and their radical cation species. Chinese Chemical Letters, 33 (2022) 1870-1874.

QR CODE