簡易檢索 / 詳目顯示

研究生: 劉信誠
Hsin-Chen Liu
論文名稱: 以咖啡渣為原料製造固體酸觸媒催化甲醇與油酸之酯化反應
A study on solid acid catalyst derived from spent coffee ground for esterification of oleic acid and methanol
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 朱義旭
Yi-Hsu Ju
Suryadi Ismadji
Suryadi Ismadji
Tran Nguyen Phuong Lan
Tran Nguyen Phuong Lan
Alchris Woo Go
Alchris Woo Go
Shella Permatasari Santoso
Shella Permatasari Santoso
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 96
中文關鍵詞: 生質柴油生物質咖啡渣固體酸觸媒酯化反應
外文關鍵詞: Biodiesel, Biomass, Spent coffee ground, solid acid catalyst, esterification
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

咖啡渣經由熱解與磺化步驟製備碳基固體酸觸媒。利用油酸及甲醇的酯化反應結果分析觸媒的活性。近似分析、SEM、BET、FTIR以及酸度來分析觸媒的特性。最適化製程條件(熱解條件: 400 ℃, 2 h及磺化條件: 100 ℃, 1 h)所製備的觸媒,擁有高的總酸密度(4.22 mmol H+g-1)及磺酸密度(3.36 mmol H+g-1)。經由最適化的酯化反應條件(80 ℃, 7 h, 觸媒量10 wt.%, 甲醇/油酸莫爾比10:1),得到最高的油酸轉化率(90.65 wt.%)。經過觸媒特性分析的結果,熱解及磺化的程序成功的將咖啡渣改質成碳基固體酸觸媒。最適化觸媒在重複使用率測試中,油酸的轉化率從91.24下降到26.4 wt.%.


Carbon-based solid acid catalyst derived from the spent coffee ground (SCG) was prepared using partial carbonization and sulfonation. The esterification of oleic acid and methanol was used to analyze the activity of the catalyst. Proximate analysis, SEM, BET, FTIR, and acidity analysis were used for the characteristics of the catalyst. The catalyst with the highest total acid density (4.22 mmol H+g-1) and sulfonic acid density (3.36 mmol H+g-1) was produced at the optimum carbonization condition (400 ℃, 2 h) and sulfonation condition (100 ℃, 1 h). The highest oleic acid conversion (90.65 wt.%) was reached at the optimum esterification condition (80 ℃, 7 h, 10 wt.% catalyst loading, MeOH /oleic acid molar ratio of 10:1). Characterization results show the SCG was successfully modified by carbonization and sulfonation. In addition, the conversion of oleic acid decreased from 91.24 - 26.41 wt.% during the reusability test.

Abstract-vi Table of content-vii List of figures-x List of tables-xii Chapter 1..........................................................1 Introduction-1 1.1 Background of the study........................................1 1.1.1 Biodiesel background.........................................1 1.1.2 Catalyst background..........................................2 1.1.3 Biomass derived catalyst background..........................3 1.1.4 Coffee background............................................5 1.2 Objectives of the study........................................7 Chapter 2..........................................................8 Literatures review.................................................8 2.1 The future of biodiesel........................................8 2.2 Biomass-based catalyst........................................13 2.2.1 Motivation to study biomass-based catalyst..................14 2.2.2 The characteristic of biomass-based catalyst................20 2.3 Carbonization.................................................22 2.3.1 The effect of temperature for biochar.......................23 2.3.2 Different types of pyrolysis operating condition............25 2.3.3 The application of biochar used on the catalyst.............26 2.4 Sulfonation...................................................27 2.5 Carbon-based solid acid catalyst for esterification...........28 2.6 Spent coffee ground application...............................30 2.6.1 The background of spent coffee ground.......................30 2.6.2 The characteristic of spent coffee ground...................33 2.6.3 The application of SCG......................................35 Chapter 3.........................................................37 Materials and methodology.........................................37 3.1 Materials.....................................................37 3.2 Synthesis of carbon-based acid catalyst.......................38 3.3 Characterization of SCG catalyst..............................40 3.3.1 Lipid content...............................................40 3.3.2 Proximate analysis..........................................41 3.3.3 FTIR........................................................42 3.3.4 BET.........................................................43 3.3.5 SEM.........................................................43 3.3.6 Acid Density................................................43 3.4 Catalytic performance.........................................45 3.4.1 Esterification..............................................45 3.4.2 Reusability test............................................46 3.4.3 Gas chromatography analysis.................................48 Chapter 4.........................................................49 Results and discussion............................................49 4.1 Lipid content and proximate analysis..........................49 4.2 Effect of carbonization.......................................50 4.3 Effect of sulfonation.........................................52 4.4 Catalyst characterization.....................................56 4.4.1 FTIR........................................................56 4.4.2 SEM.........................................................59 4.4.3 BET.........................................................62 4.4.4 Acid density................................................63 4.5 Results of esterification reaction............................64 4.5.1 Effect of temperature.......................................64 4.5.2 Effect of reactant molar ratio..............................66 4.5.3 Effect of the catalyst loading..............................68 4.5.4 Effect of reaction time.....................................69 4.6 Reusability test..............................................70 Chapter 5.........................................................72 Conclusion........................................................72 References........................................................73 Appendix..........................................................86   List of figures Figure 1.1.1 Number of articles published on SCG according to Scopus database. (last accessed 27/06/2019, document search: spent coffee ground)..5 Figure 2.1.1 Main process step in the production of biodiesel.....11 Figure 2.2.1.1 The process of catalyst production ................15 Figure 2.3.1 Summary representation of biomass sources............22 Figure 2.5.1 The mechanism of esterification of oleic acid and methanol...29 Figure 2.6.1 Global coffee production between 2014 and 2018 obtained from the International Coffee Organization.................................30 Figure 2.6.2 The effect of coffee production and SCG impact the environment (Bio-bean, 2019) ......................................................32 Figure 2.6.3 The application of spent coffee ground............................................................35 Figure 3.2.1 The flow chart of the methodology of preparation catalyst....39 Figure 3.4.1 Flowchart of esterification process..................47 Figure 4.2.1 Biochar yield at different temperature of furnace....50 Figure 4.2.2 Different carbonization temperature of catalyst......51 Figure 4.3.1 Different sulfonation temperature for 1 h............52 Figure 4.3.2 Different sulfonation temperature for 5 h............52 Figure 4.3.3 Different sulfonation temperature for 10 h...........53 Figure 4.3.4 Pareto chart of sulfonation temperature for different sulfonation time (1, 5, 10 h) .....................................................54 Figure 4.3.5 Pareto chart of sulfonation time for different sulfonation temperature (50,100,150 ℃) ..................................................54 Figure 4.4.1.1 FTIR figure of SCG and carbonized SCG at 400 ℃ for 2 h is called P400, s50(1), s100(1), and s150(1) ...............................56 Figure 4.4.2.1 SEM (x10000 and 9500) figure of (a) SCG, (b) carbonized SCG at 400 ℃ (c) s50(1), (d) s100(1), and (e) s150(1) ..................59 Figure 4.4.2.2 SEM (x2000) figure of (f) s50(1), (g) s100(1), and (h) s150(1) ...60 Figure 4.4.2.3 EDX analysis of SCG, P400, s50(1), s100(1), and s150(1) ..........61 Figure 4.5.1.1 Esterification reaction at different temperature..................65 Figure 4.5.2.1 Esterification reaction at different molar ratio of methanol and oleic acid .......................................................66 Figure 4.5.3.1 Esterification reaction at different catalyst loading.............68 Figure 4.5.4.1 Esterification reaction at different reaction time................69 Figure 4.6.1 Reusability of the s100(1) catalyst..........................................................70 Figure 4.6.2 FTIR figure of s100(1) and reused catalyst from cycle 4.................................................................71 Figure appendix 1 The calibration curve of methyl oleate............................................................86 Figure appendix 2 The calibration curve of oleic acid..............................................................86 List of tables Table 2.2.1 Advantages and disadvantages of homogeneous and heterogeneous catalysts for biodiesel production..........................................13 Table 2.2.2 Biomass-derived solid acid catalyst for biodiesel production........................................................19 Table 2.3.2 Operating conditions for different types of pyrolysis.........................................................25 Table 2.5.1 Biomass-derived carbon-based solid acid catalyst for biodiesel product...........................................................28 Table 4.1.1 Lipid content and results of proximate analysis of spent coffee ground..49 Table 4.4.1.1 FTIR characterization of SCG, P400, and catalyst..........................................................58 Table 4.3.3.1 Structure characterizations of biochar, fresh catalyst............62 Table 4.4.4.1 Total acid density and sulfonic acid density of fresh and reused catalysts.........................................................63

[1] C. Pirola, C. L. Bianchi, D. C. Boffito, G. Carvoli, V. Ragaini, Vegetable oil deacidification by amberlyst: Study of the catalyst lifetime and a suitable reactor configuration, Ind. Eng. Chem. Res. 49 (2010) 4601-4606. doi:10.1021/ie901980c.
[2] J. Cheng, Y. Qiu, R. Huang, W. Yang, J. Zhou, K. Cen, Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst, Bioresource Technol. 221 (2016) 344-349. doi:10.1016/j.biortech.2016.09.064.
[3] S. H.Teo, A. Islam, T. Yusaf, Y. H.Taufiq-Yap, Transesterification of Nannochloropsis oculata microalga’s oil to biodiesel using calcium methoxide catalyst, Energy. 78 (2014) 63-71. doi:10.1016/j.energy.2014.07.045.
[4] M. S. Dhawan, G. D. Yadav, Insight into a catalytic process for simultaneous production of biodiesel and glycerol carbonate from triglycerides, Catal. Today. 309 (2018) 161-171. doi:10.1016/j.cattod.2017.08.020.
[5] S. H. Y. S. Abdullah, N. H. M. Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoon, A. Endut, A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production, Renew. Sust. Energ. Rev. 70 (2017) 1040-1051. doi:10.1016/j.rser.2016.12.008.
[6] Y. T. Yang, X. X. Yang, Y. T. Wang, J. Luo, F. Zhang, W. J. Yang, J. H. Chen, Alcohothermal carbonization of biomass to prepare novel solid catalysts for oleic acid esterification, Fuel. 219 (2018) 166-175. doi:10.1016/j.fuel.2018.01.072.
[7] S. wenGong, J. Lu, H. hongWang, L. junLiu, Q. Zhang, Biodiesel production via esterification of oleic acid catalyzed by picolinic acid modified 12-tungstophosphoric acid, Appl. Energy. 134 (2014) 283-289. doi:10.1016/j.apenergy.2014.07.099.
[8] Y. D. Long, Z. Fang, T. C. Su, Q. Yang, Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts, Appl. Energ. 113 (2014) 1819-1825. doi:10.1016/j.apenergy.2012.12.076.
[9] M. Li, Y. Zheng, Y. Chen, X. Zhu, Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk, Bioresource. Technol. 154 (2014) 345-348. doi:10.1016/j.biortech.2013.12.070.
[10] J. M. Marchetti, A. F. Errazu, Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid, Fuel. 87 (2008) 3477-3480. doi:10.1016/j.fuel.2008.05.011.
[11] G. Santori, G. DiNicola, M. Moglie, F. Polonara, A review analyzing the industrial biodiesel production practice starting from vegetable oil refining, Appl. Energ. 92 (2012) 109-132. doi:10.1016/j.apenergy.2011.10.031.
[12] M. C. Nongbe, T. Ekou, L. Ekou, K. B. Yao, E. LeGrognec, F. X. Felpin, Biodiesel production from palm oil using sulfonated graphene catalyst, Renew. Energ. 106 (2017) 135-141. doi:10.1016/j.renene.2017.01.024.
[13] Z. Gao, S. Tang, X. Cui, S. Tian, M. Zhang, Efficient mesoporous carbon-based solid catalyst for the esterification of oleic acid, Fuel. 140 (2015) 669-676. doi:10.1016/j.fuel.2014.10.012.
[14] M. G. Montes D’Oca, R. M. Soares, R. R. DeMoura, V. DeFreitas Granjão, Sulfamic acid: An efficient acid catalyst for esterification of FFA, Fuel. 97 (2012) 884-886. doi:10.1016/j.fuel.2012.02.038.
[15] H. Yu, S. Niu, C. Lu, J. Li, Y. Yang, Sulfonated coal-based solid acid catalyst synthesis and esterification intensification under ultrasound irradiation, Fuel. 208 (2017) 101-110. doi:10.1016/j.fuel.2017.06.122.
[16] K. Ngaosuwan, J. G. Goodwin, P. Prasertdham, A green sulfonated carbon-based catalyst derived from coffee residue for esterification, Renew. Energ. 86 (2016) 262-269. doi:10.1016/j.renene.2015.08.010.
[17] H. Wang, L. Wang, S. He, F. S. Xiao, Enhancement of Catalytic Properties by Adjusting Molecular Diffusion in Nanoporous Catalysts, in: Adv. Catal. . (2018) 1-47. doi:10.1016/bs.acat.2018.08.001.
[18] A. K. Endalew, Y. Kiros, R. Zanzi, Inorganic heterogeneous catalysts for biodiesel production from vegetable oils, Biomass. Bioenerg. 35 (2011) 3787- 3809. doi:10.1016/j.biombioe.2011.06.011.
[19] Y. Xiu, A. Chen, X. Liu, C. Chen, J. Chen, L. Guo, R. Zhang, Z. Hou, Selective dehydration of sorbitol to 1,4-anhydro-d-sorbitol catalyzed by a polymer-supported acid catalyst, RSC. Adv. 5 (2015) 28233-28241. doi:10.1039/c5ra01371b.
[20] M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo, S. Hayashi, K. Domen, A carbon material as a strong protonic acid, Angew. Chem. Int. Edit. 43 (2004) 2955-2958. doi:10.1002/anie.200453947.
[21] S. Soltani, U. Rashid, R. Yunus, Y. H. Taufiq-Yap, Biodiesel production in the presence of sulfonated mesoporous ZnAl2O4 catalyst via esterification of palm fatty acid distillate (PFAD), Fuel. 178 (2016) 253-262. doi:10.1016/j.fuel.2016.03.059.
[22] A. Carrero, G. Vicente, R. Rodríguez, M. Linares, G. L. DelPeso, Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil, Catal. Today, (2011) 148-153. doi:10.1016/j.cattod.2010.11.058.
[23] D. E. López, K. Suwannakarn, D. A. Bruce, J. G. Goodwin, Esterification and transesterification on tungstated zirconia: Effect of calcination temperature, J. Catal. 247 (2007) 43-50. doi:10.1016/j.jcat.2007.01.003.
[24] X. Mo, D. E. López, K. Suwannakarn, Y. Liu, E. Lotero, J. G. Goodwin, C. Lu, Activation and deactivation characteristics of sulfonated carbon catalysts, J. Catal. 254 (2008) 332-338. doi:10.1016/j.jcat.2008.01.011.
[25] M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen, M. Hara, Green chemistry: Biodiesel made with sugar catalyst, Nature. 438 (2005) 178. doi:10.1038/438178a.
[26] L. J. Konwar, J. Boro, D. Deka, Review on latest developments in biodiesel production using carbon-based catalysts, Renew. Sust. Energ. Rev. 29 (2014) 546-564. doi:10.1016/j.rser.2013.09.003.
[27] Y. M. Sani, W. M. A. W. Daud, A. R. Abdul Aziz, Activity of solid acid catalysts for biodiesel production: A critical review, Appl. Catal. A Gen. 470 (2014) 140-161. doi:10.1016/j.apcata.2013.10.052.
[28] J. R. Kastner, J. Miller, D. P. Geller, J. Locklin, L. H. Keith, T. Johnson, Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon, Catal. Today. 190 (2012) 122-132. doi:10.1016/j.cattod.2012.02.006.
[29] Q. Shu, Q. Zhang, G. Xu, Z. Nawaz, D. Wang, J. Wang, Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst, Fuel Process. Technol. 90 (2009) 1002-1008. doi:10.1016/j.fuproc.2009.03.007.
[30] W. Y. Lou, Q. Guo, W. J. Chen, M. H. Zong, H. Wu, T. J. Smith, A highly active bagasse-derived solid acid catalyst with properties suitable for production of biodiesel, ChemSusChem. 5 (2012) 1533-1541. doi:10.1002/cssc.201100811.
[31] T. Liu, Z. Li, W. Li, C. Shi, Y. Wang, Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol, Bioresource Technol. 133 (2013) 618-621. doi:10.1016/j.biortech.2013.01.163.
[32] H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel. 86 (2007) 1781-1788. doi:10.1016/j.fuel.2006.12.013.
[33] F. J. Gómez-De La Cruz, F. Cruz-Peragón, P. J. Casanova-Peláez, J. M. Palomar-Carnicero, A vital stage in the large-scale production of biofuels from spent coffee grounds: The drying kinetics, Fuel Process Technol. 130 (2015) 188-196. doi:10.1016/j.fuproc.2014.10.012.
[34] M. Sarno, M. Iuliano, Active biocatalyst for biodiesel production from spent coffee ground, Bioresource Technol. 266 (2018) 431-438. doi:10.1016/j.biortech.2018.06.108.
[35] H. M. Amaro, A. C. Guedes, F. X. Malcata, Advances and perspectives in using microalgae to produce biodiesel, Appl. Energ. 88 (2011) 3402-3410. doi:10.1016/j.apenergy.2010.12.014.
[36] M. A. Fazal, A. S. M. A. Haseeb, H. H. Masjuki, Biodiesel feasibility study: An evaluation of material compatibility; Performance; emission and engine durability, Renew. Sust. Energ. Rev. (2011). doi:10.1016/j.rser.2010.10.004.
[37] O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology, Renew. Sust. Energ. Rev. 39 (2014) 748-764. doi:10.1016/j.rser.2014.07.113.
[38] G. Vicente, M. Martínez, J. Aracil, Integrated biodiesel production: A comparison of different homogeneous catalysts systems, Bioresource Technol. (2004). doi:10.1016/j.biortech.2003.08.014.
[39] E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, J. G. Goodwin, Synthesis of biodiesel via acid catalysis, Ind. Eng. Chem. Res. 44 (2005) 5353-5363. doi:10.1021/ie049157g.
[40] G. Knothe, “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties, Energ. and Fuel. 22 (2008) 1358-1364. doi:10.1021/ef700639e.
[41] S. N. Gebremariam, J. M. Marchetti, Economics of biodiesel production: Review, Energy Convers. Manag. 168 (2018) 74-84. doi:10.1016/j.enconman.2018.05.002.
[42] M. J. Haas, Improving the economics of biodiesel production through the use of low value lipids as feedstocks: Vegetable oil soapstock, Fuel Process. Technol. 86 (2005) 1087-1096. doi:10.1016/j.fuproc.2004.11.004.
[43] C. C. Lin, M. C. Hsiao, Optimization of Biodiesel Production from Waste Vegetable Oil Assisted by Co-Solvent and Microwave Using a Two-Step Process, J. Sustain. Bioenerg. Syst. 03 (2013) 1-6. doi:10.4236/jsbs.2013.31001.
[44] R. Tesser, M. DiSerio, L. Casale, L. Sannino, M. Ledda, E. Santacesaria, Acid exchange resins deactivation in the esterification of Acid exchange resins deactivation in the esterification of free fatty acids, Chem. Eng. J. (2010). doi:10.1016/jcej.2010.04.026.
[45] T. Dong, J. Wang, C. Miao, Y. Zheng, S. Chen, Two-step in situ biodiesel production from microalgae with high free fatty acid content, Bioresource Technol. 136 (2013) 8-15. doi:10.1016/j.biortech.2013.02.105.
[46] S. V. Ley, I. R. Baxendale, R. N. Bream, P. S. Jackson, A. G. Leach, D. A. Longbottom, M. Nesi, J. S. Scott, R. I. Storer, S. J. Taylor, Multi-step organic synthesis using solid-supported reagents and scavengers: A new paradigm in chemical library generation, J. Chem. Soc. Perk. T. 1. (2000) 3815-4195. doi:10.1039/b006588i.
[47] P. T. Anastas, M. M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Accounts Chem. Res. 35 (2002) 686-694. doi:10.1021/ar010065m.
[48] J. M. DeSimone, Practical approaches to green solvents, Science (80-. ). 297 (2002) 799-803. doi:10.1126/science.1069622.
[49] P. T. Anastas, J. B. Zimmerman, Peer Reviewed: Design Through the 12 Principles of Green Engineering, Environ. Sci. Technol. 37 (2003) 94A-101A. doi:10.1021/es032373g.
[50] S. M. Coman, V. I. Parvulescu, Heterogeneous Catalysis for Biodiesel Production, Role Catal. Sust. Prod. Bio-Fuels and Bio-Chemicals, (2013) 93-136. doi:10.1016/B978-0-444-56330-9.00004-8.
[51] Y. C. Sharma, B. Singh, J. Korstad, Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel, Biofuel. Bioprod. Bior. 5 (2011) 69-92. doi:10.1002/bbb.253.
[52] T. Okuhara, Water-tolerant solid acid catalysts, Chem. Rev. 102 (2002) 3641-3666. doi:10.1021/cr0103569.
[53] I. K. Mbaraka, B. H. Shanks, Conversion of oils and fats using advanced mesoporous heterogeneous catalysts, J. Am. Oil Chem. Soc., J. Am. Oil Chem. Soc. 83 (2006) 79-91. doi:10.1007/s11746-006-1179-x.
[54] M. M. R. Talukder, J. C. Wu, S. K. Lau, L. C. Cui, G. Shimin, A. Lim, Comparison of novozym 435 and amberlyst 15 as heterogeneous catalyst for production of biodiesel from palm fatty acid distillate, Energ. Fuel. 23 (2009) 1-4. doi:10.1021/ef8006245.
[55] M. A. Harmer, Q. Sun, Solid acid catalysis using ion-exchange resins, Appl. Catal. A-Gen. 221 (2001) 45-62. doi:10.1016/S0926-860X(01)00794-3.
[56] S. Semwal, A. K. Arora, R. P. Badoni, D. K. Tuli, Biodiesel production using heterogeneous catalysts, Bioresource Technol. 102 (2011) 2151-2161. doi:10.1016/j.biortech.2010.10.080.
[57] M. Zabeti, W. M. A. Wan Daud, M. K. Aroua, Activity of solid catalysts for biodiesel production: A review, Fuel Process. Technol. 90 (2009) 770-777. doi:10.1016/j.fuproc.2009.03.010.
[58] M. Ma, X. Huang, E. Zhan, Y. Zhou, H. Xue, W. Shen, Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity, J. Mater. Chem. A. 5 (2017) 8887-8891. doi:10.1039/c7ta02477k.
[59] M. Choi, H. S. Cho, R. Srivastava, C. Venkatesan, D. H. Choi, R. Ryoo, Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity, Nat. Mater. 5 (2006) 718-723. doi:10.1038/nmat1705.
[60] K. Nakajima, R. Noma, M. Kitano, M. Hara, Titania as an early transition metal oxide with a high density of lewis acid sites workable in water, J. Phys. Chem. C. 117 (2013) 16028-16033. doi:10.1021/jp404523r.
[61] K. Nakajima, M. Hara, S. Hayashi, Environmentally benign production of chemicals and energy using a carbon-based strong solid acid, J. Am. Ceram. Soc. 90 (2007) 3725-3734. doi:10.1111/j.1551-2916.2007.02082.x.
[62] C. X. A. daSilva, C. J. A. Mota, The influence of impurities on the acid-catalyzed reaction of glycerol with acetone, Biomass Bioenerg. 35 (2011) 3547-3551. doi:10.1016/j.biombioe.2011.05.004.
[63] M. G. Kulkarni, R. Gopinath, L. C. Meher, A. K. Dalai, Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification, Green Chem. 8 (2006) 1056-1062. doi:10.1039/b605713f.
[64] V. L. Budarin, J. H. Clark, R. Luque, D. J. Macquarrie, Versatile mesoporous carbonaceous materials for acid catalysis, Chem. Commun. (2007) 634-636. doi:10.1039/b614537j.
[65] B. L. A. P. Devi, K. N. Gangadhar, P. S. S. Prasad, B. Jagannadh, R. B. N. Prasad, A glycerol-based carbon catalyst for the preparation of biodiesel, ChemSusChem. 2 (2009) 617-620. doi:10.1002/cssc.200900097.
[66] S. Dora, T. Bhaskar, R. Singh, D. V. Naik, D. K. Adhikari, Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst, Bioresource Technol. 120 (2012) 318-321. doi:10.1016/j.biortech.2012.06.036.
[67] F. Guo, Z. L. Xiu, Z. X. Liang, Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst, Appl. Energ. 98 (2012) 47-52. doi:10. 1016/j. apenergy. 2012.02.071.
[68] W. Y. Lou, M. H. Zong, Z. Q. Duan, Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts, Bioresource Technol. 99 (2008) 8752-8758. doi:10.1016/j.biortech.2008.04.038.
[69] F. Ezebor, M. Khairuddean, A. Z. Abdullah, P. L. Boey, Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol, Bioresource Technol. 157 (2014) 254-262. doi:10.1016/j.biortech.2014.01.110.
[70] L. Lin, Z. Cunshan, S. Vittayapadung, S. Xiangqian, D. Mingdong, Opportunities and challenges for biodiesel fuel, Appl. Energ. 88 (2011) 1020-1031. doi:10.1016/j.apenergy.2010.09.029.
[71] D. Zeng, S. Liu, W. Gong, G. Wang, J. Qiu, H. Chen, Synthesis, characterization and acid catalysis of solid acid from peanut shell, Appl. Catal. A-Gen. 469 (2014) 284-289. doi:10.1016/j.apcata.2013.09.038.
[72] A. Corma, H. García, Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis, Chem. Rev. 103 (2003) 4307-4365. doi:10.1021/cr030680z.
[73] G. W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chem. Rev. 106 (2006) 4044-4098. doi:10.1021/cr068360d.
[74] M. H. Zong, Z. Q. Duan, W. Y. Lou, T. J. Smith, H. Wu, Preparation of a sugar catalyst and its use for highly efficient production of biodiesel, Green Chem. 9 (2007) 434-437. doi:10.1039/b615447f.
[75] S. Mani, J. R. Kastner, A. Juneja, Catalytic decomposition of toluene using a biomass derived catalyst, Fuel Process. Technol. 114 (2013) 118-125. doi:10.1016/j.fuproc.2013.03.015.
[76] A. Endut, S. H. Y. S. Abdullah, N. H. M. Hanapi, S. H. A. Hamid, F. Lananan, M. K. A. Kamarudin, R. Umar, H. Juahir, H. Khatoon, Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology, Int. Biodeter. Biodegr. 124 (2017) 250-257. doi:10.1016/j.ibiod.2017.06.008.
[77] F. A. Dawodu, O. O. Ayodele, J. Xin, S. Zhang, Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production, J. Chem. Technol. Biot. 89 (2014) 1898-1909. doi:10.1002/jctb.4274.
[78] S. Niu, Y. Ning, C. Lu, K. Han, H. Yu, Y. Zhou, Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo, Energ. Convers. Manage. 163 (2018) 59-65. doi:10.1016/j.enconman.2018.02.055.
[79] X. Liang, M. Zeng, C. Qi, One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization, Carbon. 48 (2010) 1844-1848. doi:10.1016/j.carbon.2010.01.030.
[80] J. Tang, W. Zhu, R. Kookana, A. Katayama, Characteristics of biochar and its application in remediation of contaminated soil, J. Biosci. Bioeng. 116 (2013) 653-659. doi:10.1016/j.jbiosc.2013.05.035.
[81] F. Liu, L. Wang, Q. Sun, L. Zhu, X. Meng, F. S. Xiao, Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: Heterogeneous catalysts that are faster than homogeneous catalysts, J. Am. Chem. Soc. 134 (2012) 16948-16950. doi:10.1021/ja307455w.
[82] G. Wen, B. Wang, C. Wang, J. Wang, Z. Tian, R. Schlögl, D. S. Su, Hydrothermal Carbon Enriched with Oxygenated Groups from Biomass Glucose as an Efficient Carbocatalyst, Angew. Chem. Int. Edit. 56 (2017) 600-604. doi:10.1002/anie.201609047.
[83] W. J. Liu, H. Jiang, H. Q. Yu, Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material, Chem. Rev. 115 (2015) 12251-12285. doi:10.1021/acs.chemrev.5b00195.
[84] S. H. Shuit, K. F. Yee, K. T. Lee, B. Subhash, S. H. Tan, Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: An overview, RSC Adv. 3 (2013) 9070-9094. doi:10.1039/c3ra22945a.
[85] F. Liu, J. Sun, L. Zhu, X. Meng, C. Qi, F. S. Xiao, Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions, J. Mater. Chem. 22 (2012) 5495-5502. doi:10.1039/c2jm16608a.
[86] J. Ji, G. Zhang, H. Chen, S. Wang, G. Zhang, F. Zhang, X. Fan, Sulfonated graphene as water-tolerant solid acid catalyst, Chem. Sci. 2 (2011) 484-487. doi:10.1039/c0sc00484g.
[87] M. Hara, Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid Brønsted acid catalyst, Top. Catal. 53 (2010) 805-810. doi:10.1007/s11244-010-9458-z.
[88] S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, T. J. Morgan, An overview of the organic and inorganic phase composition of biomass, Fuel. 94 (2012) 1-33. doi:10.1016/j.fuel.2011.09.030.
[89] D. R. Vardon, B. K. Sharma, G. V. Blazina, K. Rajagopalan, T. J. Strathmann, Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis, Bioresource Technol. 109 (2012) 178-187. doi:10.1016/j.biortech.2012.01.008.
[90] M. Tripathi, J. N. Sahu, P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review, Renew. Sust. Energ. Rev. 55 (2016) 467-481. doi:10.1016/j.rser.2015.10.122.
[91] J. M. Encinar, F. J. Beltrán, A. Bernalte, A. Ramiro, J. F. González, Pyrolysis of two agricultural residues: Olive and grape bagasse. Influence of particle size and temperature, Biomass Bioenerg. 11 (1996) 397-409. doi:10.1016/S0961-9534(96)00029-3.
[92] A. R. Mohamed, Z. Hamzah, M. Z. M. Daud, Z. Zakaria, The effects of holding time and the sweeping nitrogen gas flowrates on the pyrolysis of EFB using a fixed bed reactor, Procedia Eng., 2013: pp. 185-191. doi:10.1016/j.proeng.2013.02.024.
[93] W. T. Tsai, M. K. Lee, Y. M. Chang, Fast pyrolysis of rice husk: Product yields and compositions, Bioresource Technol. 98 (2007) 22-28. doi:10.1016/j.biortech.2005.12.005.
[94] W. T. Tsai, C. Y. Chang, S. L. Lee, Preparation and characterization of activated carbons from corn cob, Carbon. 35 (1997) 1198-1200. doi:10.1016/S0008-6223(97)84654-4.
[95] A. E. Pütün, A. Özean, E. Pütün, Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: Yields and structural analysis of bio-oil, J. Anal. Appl. Pyrol. 52 (1999) 33-49. doi:10.1016/S0165-2370(99)00044-3.
[96] F. Ateş, E. Pütün, A. E. Pütün, Fast pyrolysis of sesame stalk: Yields and structural analysis of bio-oil, J. Anal. Appl. Pyrol. 71 (2004) 779-790. doi:10.1016/j.jaap.2003.11.001.
[97] Y. Yuan, T. Yuan, D. Wang, J. Tang, S. Zhou, Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell, Bioresource Technol. 144 (2013) 115-120. doi:10.1016/j.biortech.2013.06.075.
[98] M. L. Nieva Lobos, J. M. Sieben, V. Comignani, M. Duarte, M. A. Volpe, E. L. Moyano, Biochar from pyrolysis of cellulose: An alternative catalyst support for the electro-oxidation of methanol, Int. J. Hydrogen Energ. 41 (2016) 10695-10706. doi:10.1016/j.ijhydene.2016.04.041.
[99] N. Muradov, B. Fidalgo, A. C. Gujar, N. Garceau, A. T-Raissi, Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming, Biomass Bioenerg. 42 (2012) 123-131. doi:10.1016/j.biombioe.2012.03.003.
[100] A. M. Dehkhoda, A. H. West, N. Ellis, Biochar based solid acid catalyst for biodiesel production, Appl. Catal. A-Gen. 382 (2010) 197-204. doi:10.1016/j.apcata.2010.04.051.
[101] R. Moreira, R. dosReis Orsini, J. M. Vaz, J. C. Penteado, E. V. Spinacé, Production of Biochar, Bio-Oil and Synthesis Gas from Cashew Nut Shell by Slow Pyrolysis, Waste Biomass Valori. 8 (2017) 217-224. doi:10.1007/s12649-016-9569-2.
[102] O. L. Ki, A. Kurniawan, C. X. Lin, Y. H. Ju, S. Ismadji, Bio-oil from cassava peel: A potential renewable energy source, Bioresource Technol. 145 (2013) 157-161. doi:10.1016/j.biortech.2013.01.122.
[103] X. Mo, E. Lotero, C. Lu, Y. Liu, J. G. Goodwin, A novel sulfonated carbon composite solid acid catalyst for biodiesel synthesis, Catal. Lett. 123 (2008) 1-6. doi:10.1007/s10562-008-9456-y.
[104] M. Keiluweit, P. S. Nico, M. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol. 44 (2010) 1247-1253. doi:10.1021/es9031419.
[105] A. V. McBeath, C. M. Wurster, M. I. Bird, Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis, Biomass Bioenerg. 73 (2015) 155-173. doi:10.1016/j.biombioe.2014.12.022.
[106] J. F. González, S. Román, J. M. Encinar, G. Martínez, Pyrolysis of various biomass residues and char utilization for the production of activated carbons, J. Anal. Appl. Pyrol. 85 (2009) 134-141. doi:10.1016/j.jaap.2008.11.035.
[107] L. Wei, S. Xu, L. Zhang, H. Zhang, C. Liu, H. Zhu, S. Liu, Characteristics of fast pyrolysis of biomass in a free fall reactor, Fuel Process. Technol. 87 (2006) 863-871. doi:10.1016/j.fuproc.2006.06.002.
[108] S. Meyer, B. Glaser, P. Quicker, Technical, economical, and climate-related aspects of biochar production technologies: A literature review, Environ. Sci. Technol. 45 (2011) 9473-9483. doi:10.1021/es201792c.
[109] S. Kang, J. Ye, J. Chang, Recent Advances in Carbon-Based Sulfonated Catalyst: Preparation and Application, Int. Rev. Chem. Eng. 5 (2013) 133-144. doi:10.15866/ireche.v5i2.6912.
[110] J. Lee, K. H. Kim, E. E. Kwon, Biochar as a Catalyst, Renew. Sus. Energ. Rev. 77 (2017) 70-79. doi:10.1016/j.rser.2017.04.002.
[111] Y. B. Jo, S. H. Park, J. K. Jeon, Y. K. Park, Transesterification of Soybean Oil Using KOH/KL Zeolite and Ca/Undaria Pinnatifida Char, Appl. Chem. Eng. 23 (2012) 604-607.
[112] J. M. Jung, J. I. Oh, Y. K. Park, J. Lee, E. E. Kwon, CO2-mediated chicken manure biochar manipulation for biodiesel production, Environ. Res. (2019) 348-355. doi:10.1016/j.envres.2019.01.048.
[113] A. Deng, Q. Lin, Y. Yan, H. Li, J. Ren, C. Liu, R. Sun, A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system, Bioresource Technol. 216 (2016) 754-760. doi:10.1016/j.biortech.2016.06.002.
[114] I. K. M. Yu, D. C. W. Tsang, A. C. K. Yip, S. S. Chen, Y. S. Ok, C. S. Poon, Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps, Bioresource Technol. 219 (2016) 338-347. doi:10.1016/j.biortech.2016.08.002.
[115] J. Emrani, A. Shahbazi, A Single Bio-based Catalyst for Bio-fuel and Bio-diesel, J. Biotechnol. 02 (2012). doi:10.4172/2155-952x.1000124.
[116] Y. Zhou, S. Niu, J. Li, Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol, Energ. Convers. Manage. 114 (2016) 188-196. doi:10.1016/j.enconman.2016.02.027.
[117] F. Ezebor, M. Khairuddean, A. Z. Abdullah, P. L. Boey, Esterification of oily-FFA and transesterification of high FFA waste oils using novel palm trunk and bagasse-derived catalysts, Energ. Convers. Manage. 88 (2014) 1143-1150. doi:10.1016/j.enconman.2014.04.062.
[118] C. Wang, Y. Hu, Q. Chen, C. Lv, S. Jia, Bio-oil upgrading by reactive distillation using p-toluene sulfonic acid catalyst loaded on biomass activated carbon, Biomass Bioenerg. 56 (2013) 405-411. doi:10.1016/j.biombioe.2013.04.026.
[119] M. Li, D. Chen, X. Zhu, Preparation of solid acid catalyst from rice husk char and its catalytic performance in esterification, Chinese J. Catal. 34 (2013) 1674-1682. doi:10.1016/s1872-2067(12)60634-2.
[120] V. M. deAguiar, A. L. F. deSouza, F. S. Galdino, M. M. C. daSilva, V. G. Teixeira, E. R. Lachter, Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids, Renew. Energ. 114 (2017) 725-732. doi:10.1016/j.renene.2017.07.084.
[121] S. I. Mussatto, E. M. S. Machado, S. Martins, J. A. Teixeira, Production, Composition, and Application of Coffee and Its Industrial Residues, Food Bioprocess Tech. 4 (2011) 661-672. doi:10.1007/s11947-011-0565-z.
[122] Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger, M.Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel. 96 (2012) 70-76. doi:10.1016/j.fuel.2012.01.023.
[123] P. S. Murthy, M. Madhava Naidu, Sustainable management of coffee industry by-products and value addition - A review, Resour. Conserv. Recy. 66 (2012) 45-58. doi:10.1016/j.resconrec.2012.06.005.
[124] T. Ciesielczuk, C. Rosik-Dulewska, J. Poluszyńska, D. Miłek, A. Szewczyk, I. Sławińska, Acute Toxicity of Experimental Fertilizers Made of Spent Coffee Grounds, Waste Biomass Valori. 9 (2018) 2157-2164. doi:10.1007/s12649-017-9980-3.
[125] B. Janissen, T. Huynh, Chemical composition and value-adding applications of coffee industry by-products: A review, Resour. Conserv. Recy. 128 (2018) 110-117. doi:10.1016/j.resconrec.2017.10.001.
[126] J. McNutt, Q. (Sophia)He, Spent coffee grounds: A review on current utilization, J. Ind. Eng. Chem. 71 (2019) 78-88. doi:10.1016/j.jiec.2018.11.054.
[127] M. M. R. DeMelo, H. M. A. Barbosa, C. P. Passos, C. M. Silva, Supercritical fluid extraction of spent coffee grounds: Measurement of extraction curves, oil characterization and economic analysis, J. Supercrit. Fluid. 86 (2014) 150-159. doi:10.1016/j.supflu.2013.12.016.
[128] D. Yordanov, Z. Mustafa, R. Milina, Z. Tsonev, Multi-criteria optimisation process of the oil extraction from spent coffee ground by various solvents, Oxid. Commun. 39 (2016) 1478-1487.
[129] S. I. Mussatto, L. M. Carneiro, J. P. A. Silva, I. C. Roberto, J. A. Teixeira, A study on chemical constituents and sugars extraction from spent coffee grounds, Carbohydr. Polym. 83 (2011) 368-374. doi:10.1016/j.carbpol.2010.07.063.
[130] R. Cruz, E. Mendes, Á. Torrinha, S. Morais, J. A. Pereira, P. Baptista, S. Casal, Revalorization of spent coffee residues by a direct agronomic approach, Food Res. Int. 73 (2015) 190-196. doi:10.1016/j.foodres.2014.11.018.
[131] N. S. Caetano, V. F. M. Silva, A. C. Melo, A. A. Martins, T. M. Mata, Spent coffee grounds for biodiesel production and other applications, Clean Technol. Envir. Policy. 16 (2014) 1423-1430. doi:10.1007/s10098-014-0773-0.
[132] D. Pujol, C. Liu, J. Gominho, M. À. Olivella, N. Fiol, I. Villaescusa, H. Pereira, The chemical composition of exhausted coffee waste, Ind. Crop. Prod. 50 (2013) 423-429. doi:10.1016/j.indcrop.2013.07.056.
[133] R. Campos-Vega, G. Loarca-Piña, H. A. Vergara-Castañeda, B. Dave Oomah, Spent coffee grounds: A review on current research and future prospects, Trends Food Sci. Tech. 45 (2015) 24-36. doi:10.1016/j.tifs.2015.04.012.
[134] A. Sampaio, G. Dragone, M. Vilanova, J. M. Oliveira, J. A. Teixeira, S. I. Mussatto, Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground, LWT-Food Sci. Technol. 54 (2013) 557-563. doi:10.1016/j.lwt.2013.05.042.
[135] L. Panzella, P. Cerruti, V. Ambrogi, S. Agustin-Salazar, G. D’Errico, C. Carfagna, L. Goya, S. Ramos, M. A. Martín, A. Napolitano, M. D’Ischia, A Superior All-Natural Antioxidant Biomaterial from Spent Coffee Grounds for Polymer Stabilization, Cell Protection, and Food Lipid Preservation, ACS Sustain. Chem. Eng. 4 (2016) 1169-1179. doi:10.1021/acssuschemeng.5b01234.
[136] S. K. Karmee, A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites, Waste Manage. 72 (2018) 240-254. doi:10.1016/j.wasman.2017.10.042.
[137] M. H. Park, Y. S. Yun, S. Y. Cho, N. R. Kim, H. J. Jin, Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors, Carbon Lett. 19 (2016) 66-71. doi:10.5714/cl.2016.19.066.
[138] I. V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions, Chem. Rev. 98 (1998) 171-198. doi:10.1021/cr960400y.
[139] S. H. Kong, S. K. Loh, R. T. Bachmann, S. A. Rahim, J. Salimon, Biochar from oil palm biomass: A review of its potential and challenges, Renew. Sust. Energ. Rev. 39 (2014) 729-739. doi:10.1016/j.rser.2014.07.107.
[140] F. A. Dawodu, O. Ayodele, J. Xin, S. Zhang, D. Yan, Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst, Appl. Energ. 114 (2014) 819-826. doi:10.1016/j.apenergy.2013.10.004.
[141] S. L. Goertzen, K. D. Thériault, A. M. Oickle, A. C. Tarasuk, H. A. Andreas, Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination, Carbon. 48 (2010) 1252-1261. doi:10.1016/j.carbon.2009.11.050.
[142] A. W. Go, P. L. Tran Nguyen, L. H. Huynh, Y. T. Liu, S. Sutanto, Y. H. Ju, Catalyst free esterification of fatty acids with methanol under subcritical condition, Energy. 70 (2014) 393-400. doi:10.1016/j.energy.2014.04.013.
[143] M. Huang, J. Luo, Z. Fang, H. Li, Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol, Appl. Catal. B - Environ. 190 (2016) 103-114. doi:10.1016/j.apcatb.2016.02.069.
[144] M. Okamura, A. Takagaki, M. Toda, J. N. Kondo, K. Domen, T. Tatsumi, M. Hara, S. Hayashi, Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon, Chem. Mater. 18 (2006) 3039-3045. doi:10.1021/cm0605623.
[145] C. S. Estes, A. Y. Gerard, J. D. Godward, S. B. Hayes, S. H. Liles, J. L. Shelton, T. S. Stewart, R. I. Webster, H. F. Webster, Preparation of highly functionalized carbon nanoparticles using a one-step acid dehydration of glycerol, Carbon. 142 (2019) 547-557. doi:10.1016/j.carbon.2018.10.074.
[146] S. Chellappan, V. Nair, V. Sajith, K. Aparna, Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification, Chinese J. Chem. Eng. (2018) 2654-2663. doi:10.1016/j.cjche.2018.02.034.
[147] D. Zeng, Q. Zhang, S. Chen, S. Liu, G. Wang, Synthesis porous carbon-based solid acid from rice husk for esterification of fatty acids, Micropor. Mesopor. Mat. 219 (2016) 54-58. doi:10.1016/j.micromeso.2015.07.028.
[148] C. J. Pouchert, C. Aldrich Chemical, The Aldrich library of FT-IR spectra, 1997.

無法下載圖示 全文公開日期 2021/08/12 (校內網路)
全文公開日期 2024/08/12 (校外網路)
全文公開日期 2024/08/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE