簡易檢索 / 詳目顯示

研究生: 陳弈安
I-An Chen
論文名稱: 含咔唑、三苯胺和二苯甲酮的供體-受體交替和無規聚合物的合成、性質鑑定及有機場效電晶體之記憶體的應用
Synthesis, Characterization and OFET Memory Application of Donor-Acceptor Alternating and Random Polymers Containing Carbazoles, Triphenylamines and Benzophenones
指導教授: 游進陽
Chin-Yang Yu
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 111
中文關鍵詞: 鈴木 -宮浦交叉偶聯反應咔唑三苯胺二苯甲酮交替聚合物無規聚合物有機場效應電晶體記憶體
外文關鍵詞: alternating polymers, random polymers, carbazoles, triphenylamines, Suzuki-Miyaura cross-coupling polymerization, organic field-effect transistor memory
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中,我們通過
鈴木 -宮浦交叉偶聯 聚合 反應 設計並合成了一系列含有咔
唑、三苯胺和二苯甲酮單元的 電子供體與受體 交替共聚物和無規聚合物。為了研
究不同電子 供 體在聚合物中的影響,我們研究了不同 供 體 結構 所造成 的光學、電
化學和熱性 質 差 異 。由於 3,6-咔唑和二苯甲酮的共軛斷裂, 3,6-咔唑基聚合物與
2,7-咔唑基聚合物相比 在吸收光譜中表現出完全不同的結果。另一方面,隨著
電子受體比例的增加,三苯胺基聚合物的最大吸收波長發生紅移,這 應該 與 有效
分子內電荷轉移有關 。隨著富 含 電子 的 氮原子參與共軛結構, 3,6-咔唑基和三苯
胺基聚合物表現出相對較高的 最高占據 分子軌域 能 級和紅移發射帶。由於結構中
含有豐富的芳香環,該聚合物表現出較高的熱穩定性。 並且 聚合物 更進一步被
應用於 有機場效應 電晶體記憶體裝置 ,以討論 高分子作為 駐極體的性能。在基於
並五苯的 p型 電晶體記憶體裝置 中,所有交替聚合物都可以表現出很強的空穴捕
獲能力和光恢復性能。 甚至 在 基於 N,N'-雙 (2-苯乙基 )-苝 -3,4:9,10-四羧基二酰亞
胺 的 n 型 電晶體記憶體裝置 中 3,6-咔唑基和三苯胺基交替聚合物不僅表現出光
恢復行為,還表現出 電子 捕獲能力。


In this research, we designed and synthesized a series of donor-acceptor (D-A) alternating copolymers and random polymers containing carbazoles, triphenylamines and benzophenones via Suzuki-Miyaura cross-coupling polymerization. To investigate the effects of different electron donors in polymers, we examined the optical, electrochemical and thermal properties related to different donors in chemical structures. Due to the interruption of conjugation in 3,6-carbazoles and benzophenones, 3,6-carbazole-based polymers exhibited completely different results in absorption spectra compared to 2,7-carbazole-based polymers. On the other hand, triphenylamine-based polymers revealed red-shifted absorption wavelength as the increase of the ratio of electron acceptor possibly due to the effective interchain charge transfer between donor and acceptor moieties. Along with the involvement of electron-rich nitrogen atoms in the conjugation structure, 3,6-carbazole-based and triphenylamine-based polymers displayed relatively higher HOMO levels and red-shifted emission bands. The polymers showed high thermal stability owing to the abundant aromatic rings in the structures. In addition, the polymers were made into organic field-effect transistor (OFET) memory devices to discuss the performance of the polymers as an electret. In pentacene-based p-type transistor memories, strong hole trapping ability and photo-recovery property could be manifested in all alternating polymers. Furthermore, 3,6-carbazole-based and triphenylamine-based alternating polymers in N,N'-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide (BPE-PTCDI)-based n-type transistor memories demonstrated not only photo-recovery behavior but also electron trapping ability.

謝誌.............................................................................................................................. IV Abstract ......................................................................................................................... V 中文摘要...................................................................................................................... VI Table of Content ........................................................................................................ VII Chapter 1. Introduction and Aims .................................................................................. 1 1.1 Conjugated polymer ............................................................................................. 1 1.2 Band gap and charge transport in conjugated polymer ........................................ 2 1.3 Introduction of carbazoles, triphenylamines and benzophenones ........................ 4 1.3.1 Introduction of carbazoles ............................................................................. 4 1.3.2 Introduction of triphenylamines (TPA) ......................................................... 5 1.3.3 Introduction of benzophenones ..................................................................... 6 1.4 Copolymer ............................................................................................................ 7 1.5 Organic semiconductor ........................................................................................ 8 1.5.1 Organic field-effect transistor (OFET) .......................................................... 9 1.5.2 OFET photomemory .................................................................................... 13 1.6 Aim of Project .................................................................................................... 16 Chapter 2. Result and Discussion ................................................................................ 17 2.1 Synthesis and characterization of monomers ..................................................... 17 2.1.1 Synthesis of monomers ................................................................................ 17 2.1.2 Characterization of monomers ..................................................................... 20 2.2 Synthesis and characterization of target polymers ............................................. 31 2.2.1 Synthesis of target polymers ........................................................................ 31 2.2.2 Characterization of target polymers ............................................................ 35 2.3 Properties of polymers ....................................................................................... 43 2.3.1 Optical properties of polymers .................................................................... 43 VIII 2.3.2 Electrochemical properties of polymers ...................................................... 51 2.3.3 Thermal properties of polymers .................................................................. 55 2.3.4 Morphology of polymers ............................................................................. 59 2.4 The properties of OFET memories of polymers ................................................ 61 2.4.1 P-type OFET memories of polymers ........................................................... 62 2.4.2 N-type OFET memories of polymers .......................................................... 65 Chapter 3. Conclusion .................................................................................................. 68 Chapter 4. Experimental Section ................................................................................. 70 4.1 General procedures ............................................................................................. 70 4.2 Synthesis of monomers ...................................................................................... 71 4.2.1 Synthesis of 4,4’-dibromo-2-nitrophenyl (1) ............................................... 71 4.2.2 Synthesis of 2,7-dibromo-9H-carbazole (2) ................................................ 71 4.2.3 Synthesis of 2,7-dobromo-9-octyl-9H-carbazole (M1) ............................... 72 4.2.4 Synthesis of 9-octyl-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (M2) ............................................................................................... 73 4.2.5 Synthesis of 3,6-dibromo-9H-carbazole (3) ................................................ 73 4.2.6 Synthesis of 3,6-dibromo-9-octyl-9H-carbazole (M3) ................................ 74 4.2.7 Synthesis of 9-octyl-3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (M4) ............................................................................................... 75 4.2.8 Synthesis of 4-octyl-N,N-diphenylaniline (4) .............................................. 75 4.2.9 Synthesis of 4-bromo-N-(4-bromophenyl)-N-(4-octylphenyl)aniline (M5) 76 4.2.10 Synthesis of 4-octyl-N,N-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline (M6) ......................................................................................... 77 4.2.11 Synthesis of bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanone (M7) ................................................................................... 78 4.3 Synthesis of polymers ........................................................................................ 78 4.3.1 Synthesis of alternating copolymer (mczbp-50) .......................................... 78 4.3.2 Synthesis of random copolymer (mczbp-25) ............................................... 79 4.3.3 Synthesis of random copolymer (mczbp-15) ............................................... 80 4.3.4 Synthesis of random copolymer (mczbp-5) ................................................. 80 IX 4.3.5 Synthesis of homopolymer (homo-mcz) ..................................................... 81 4.3.6 Synthesis of alternating copolymer (pczbp-50) ........................................... 81 4.3.7 Synthesis of random copolymer (pczbp-25) ................................................ 82 4.3.8 Synthesis of random copolymer (pczbp-15) ................................................ 82 4.3.9 Synthesis of random copolymer (pczbp-5) .................................................. 83 4.3.10 Synthesis of homopolymer (homo-pcz) .................................................... 83 4.3.11 Synthesis of alternating copolymer (tpabp-50) ......................................... 84 4.3.12 Synthesis of random copolymer (tpabp-25) .............................................. 84 4.3.13 Synthesis of random copolymer (tpabp-15) .............................................. 85 4.3.14 Synthesis of random copolymer (tpabp-5) ................................................ 86 4.3.15 Synthesis of homopolymer (homo-tpa) ..................................................... 86 References .................................................................................................................... 88 Appendix ......................................................................................................................... i

[1] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
[2] P. O. Morin, T. Bura, M. Leclerc, Mater. Horiz. 2016, 3, 11.
[3] A. G. S. Al-Azzawi, S. B. Aziz, E. M. A. Dannoun, A. Iraqi, M. M. Nofal, A. R. Murad, A. M. Hussein, Polymers 2022, 15, 164.
[4] M. C. Scharber, N. S. Sariciftci, Adv. Mater. Technol. 2021, 6, 2000857.
[5] S. S. Zade, N. Zamoshchik, M. Bendikov, Acc. Chem. Res. 2011, 44, 14.
[6] B. G. Kim, X. Ma, C. Chen, Y. Ie, E. W. Coir, H. Hashemi, Y. Aso, P. F. Green, J. Kieffer, J. Kim, Adv. Funct. Mater. 2013, 23, 439.
[7] E. G. Cansu-Ergun, Polym. Rev. 2017, 58, 42.
[8] A. Grobelny, A. Grobelny, S. Zapotoczny, Int. J. Mol. Sci. 2022, 23, 6162.
[9] L. Zhu, Y. Shan, R. Wang, D. Liu, C. Zhong, Q. Song, F. Wu, Chemistry 2017, 23, 4373.
[10] T. Michinobu, H. Osako, K. Shigehara, Polymers 2010, 2, 159.
[11] S. T. Wellinghoff, Z. Deng, J. F. Reed, J. Racchini, Polym. Prepr. 1984, 25, 238.
[12] A. Siove, D. Adès, C. Chevrot, G. Froyer, Makromol. Chem. 1989, 190, 1361.
[13] Z. B. Zhang, M. Fujiki, H. Z. Tang, M. Motonaga, K. Torimitsu, Macromolecules 2002, 35, 1988.
[14] J. F. Morin, M. Leclerc, Macromolecules 2001, 34, 4680.
[15] H. Wen, Z. Ge, Y. Liu, T. Yokozawa, L. Lu, X. Ouyang, Z. Tan, Eur. Polym. J. 2013, 49, 3740.
[16] L. Vacareanu, A. M. Catargiu, M. Grigoras, High Perform. Polym. 2015, 27, 476.
[17] F. Dumur, Org. Electron. 2015, 25, 345.
[18] N. Leclerc, A. Michaud, K. Sirois, J. F. Morin, M. Leclerc, Adv. Funct. Mater. 2006, 16, 1694.
[19] F. Lombeck, H. Komber, A. Sepe, R. H. Friend, M. Sommer, Macromolecules 2015, 48, 7851.
[20] X. Lian, Z. Zhao, D. Cheng, Mol. Cryst. Liq. Cryst. 2017, 648, 223.
[21] C. Fan, S. Pu, G. Liu, T. Yang, J. Photochem. Photobiol. 2008, 194, 333.
[22] Z. Jiang, Y. Chen, C. Yang, Y. Cao, Y. Tao, J. Qin, D. Ma, Org. Lett. 2009, 11, 1503.
89
[23] Y. Liu, G. Xie, Z. Ren, S. Yan, ACS Appl. Polym. Mater. 2019, 1, 2204.
[24] C. Y. Ke, M. N. Chen, M. H. Chen, Y. T. Li, Y. C. Chiu, G. S. Liou, Adv. Funct. Mater. 2021, 31, 2101288.
[25] C. Y. Ke, M. N. Chen, Y. C. Chiu, G. S. Liou, Adv. Electron. Mater. 2021, 7, 2001076.
[26] S. Y. Lee, T. Yasuda, H. Komiyama, J. Lee, C. Adachi, Adv. Mater. 2016, 28, 4019.
[27] L. Chen, C. Zhang, G. Lin, H. Nie, W. Luo, Z. Zhuang, S. Ding, R. Hu, S. J. Su, F. Huang, A. Qin, Z. Zhao, B. Z. Tang, J. Mater. Chem. C 2016, 4, 2775.
[28] B. W. Swift, M. O. De La Cruz, J. Chem. Phys. 1994, 100, 7744.
[29] L. Li, K. Raghupathi, C. Song, P. Prasad, S. Thayumanavan, Chem. Commun. 2014, 50, 13417.
[30] X. Zhu, M. Liu, Langmuir 2011, 27, 12844.
[31] X. Li, J. Rao, L. Yang, L. Zhao, S. Wang, H. Tian, J. Ding, L. Wang, Macromolecules 2021, 54, 5260.
[32] A. D. McNaught, A. Wilkinson, IUPAC Compendium of chemical terminology, Oxford: Blackwell Science 1997, 1669.
[33] K. Nishimori, M. Ouchi, Chem. Commun. 2020, 56, 3473.
[34] T. Wagner-Jauregg, Ber. Dtsch. Chem. Ges. 1930, 63, 3213.
[35] J. Huang, S. R. Turner, Polymer 2017, 116, 572.
[36] J. Ding, M. Day, G. Robertson, J. Roovers, Macromolecules 2002, 35, 3474.
[37] T. B. Halima, W. Zhang, I. Yalaoui, X. Hong, Y. F. Yang, K. N. Houk, S. G. Newman, J. Am. Chem. Soc. 2017, 139, 1311.
[38] J. Sakamoto, M. Rehahn, G. Wegner, A. D. Schluter, Macromol. Rapid Commun. 2009, 30, 653.
[39] Y. C. Chiu, C. L. Liu, W. Y. Lee, Y. Chen, T. Kakuchi, W. C. Chen, NPG Asia Mater. 2013, 5, e35.
[40] Y. Liu, S. Yan, Z. Ren, Chem. Eng. J. 2021, 417, 128089.
[41] J. Rao, L. Yang, X. Li, L. Zhao, S. Wang, J. Ding, L. Wang, Angew. Chem. Int. Ed. 2020, 59, 17903.
[42] A. J. Heeger, Chem. Soc. Rev. 2010, 39, 2354.
[43] K. R. Graham, C. Cabanetos, J. P. Jahnke, M. N. Idso, A. E. Labban, G. O. Ngongang Ndjawa, T. Heumueller, K. Vandewal, A. Salleo, B. F. Chmelka, A. Amassian, P. M. Beaujuge, M. D. McGehee, J. Am. Chem. Soc. 2014, 136, 9608.
[44] B. Shan, Q. Miao, Tetrahedron Lett. 2017, 58, 1903.
90
[45] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
[46] H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 1987, 18, 699.
[47] A. Facchetti, Mater. Today 2007, 10, 28.
[48] J. Yang, Z. Zhao, S. Wang, Y. Guo, Y. Liu, Chem 2018, 4, 2748.
[49] S. Kim, H. Yoo, J. Choi, Sensors 2023, 23, 2265.
[50] S. P. Prakoso, M. N. Chen, Y. C. Chiu, J. Mater. Chem. C 2022, 10, 13462.
[51] J. Kim, D. Ho, I. S. Kim, M. G. Kim, K. J. Baeg, C. Kim, Org. Electron. 2021, 99, 106331.
[52] M. N. Chen, S. W. Chang, S. P. Prakoso, Y. T. Li, K. L. Chen, Y. C. Chiu, ACS. Appl. Mater. Interfaces 2021, 13, 44656.
[53] C. H. Chen, Y. Wang, H. Tatsumi, T. Michinobu, S. W. Chang, Y. C. Chiu, G. S. Liou, Adv. Funct. Mater. 2019, 29, 1902991.
[54] S. H. Yang, T. S. Lin, Y. Z. Huang, H. D. Li, Y. C. Chao, Polymer 2014, 55, 6058.
[55] W. Jiang, L. Duan, J. Qiao, G. Dong, D. Zhang, L. Wang, Y. Qiu, J. Mater. Chem. 2011, 21, 4918.
[56] A. W. Freeman, M. Urvoy, M. E. Criswell, J. Org. Chem. 2005, 70, 5014.
[57] W. Dong, T. Fei, A. Palma-Cando, U. Scherf, Polym. Chem. 2014, 5, 4048.
[58] W. Bai, Z. Wang, J. Tong, J. Mei, A. Qin, J. Z. Sun, B. Z. Tang, Chem. Commun. 2015, 51, 1089.
[59] T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 2002, 60, 7508.
[60] Z. Wang, N. Wang, H. Gao, Y. Quan, H. Ju, Y. Cheng, Analyst 2019, 145, 233.
[61] B. Zhang, G. Chen, J. Xu, L. Hu, W. Yang, New J. Chem. 2016, 40, 402.
[62] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
[63] C. Y. Yu, Y. J. Hsu, Polymer 2016, 84, 65.
[64] C. Y. Yu, C. Y. Wu, Dyes Pigm. 2014, 106, 81.
[65] H. Xie, K. Zhang, C. Duan, S. Liu, F. Huang, Y. Cao, Polymer 2012, 53, 5675.
[66] Y. Fu, J. Kim, A. Siva, W. S. Shin, S. j. Moon, T. Park, J. Polym. Sci. A Polym. Chem. 2011, 49, 4368.
[67] J. Kim, Y. S. Kwon, W. S. Shin, S. J. Moon, T. Park, Macromolecules 2011, 44, 1909.
[68] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, J. Chem. Educ. 2017, 95, 197.

無法下載圖示 全文公開日期 2028/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2028/08/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE