簡易檢索 / 詳目顯示

研究生: 林冠甫
Guan-Fu Lin
論文名稱: 破布子纖維複合材料結構鑑定、機械性質及熱性質之研究
Structure, Mechanical and Thermal Properties of Cordia Dichotoma Fiber Composites
指導教授: 蘇舜恭
Shuenn-kung Su
口試委員: 邱智瑋
Chih-Wei Chiu
吳進三
Chin-San Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 聚乳酸破布子纖維複合材料機械性質熱性質
外文關鍵詞: polylactic acid, cordia dichotoma fiber, composites, mechanical properties, thermal properties
相關次數: 點閱:421下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文為研究以聚乳酸與破布子纖維為原料,開發綠色複合材(聚乳酸/破布子纖維)之製備與加工技術。使用接枝甲基丙烯酸縮水甘油酯作為聚乳酸/破布子纖維合膠的相容劑,進行複合材料的摻混成為綠色材料,並進行複合材料的結構鑑定、機械性質以及熱性質的檢測,分析出最佳特性之摻混比例。
本研究以傅立葉轉換紅外線光譜儀與X光繞射分析儀來分析複合材料的結構與結晶情形,並以熱重損失分析儀、微差掃描熱分析儀以及熔融指數分析儀來進行複合材料的熱性質與結晶分析;以掃描式電子顯微鏡來觀察材料表面型態,再進行萬能拉力試驗與衝擊試驗,測得複合材料的機械性質。由實驗結果分析,接枝甲基丙烯酸縮水甘油酯的聚乳酸與破布子纖維有較佳的包覆性,其抗張強度與衝擊強度相對於未改質的聚乳酸/破布子纖維複合材料高約2.1-9.3%與7.4-12.5%左右,在破布子纖維含量為10 wt%時有最佳的機械特性與穩定的流動性。


In this paper, preparation and processing technique of composites from polylactic acid (PLA) and cordia dichotoma fiber (CDF). The glycidyl methacrylate (GMA) was used to chemically modify the polylactic acid to have glycidyl methacrylate functional groups by using the grafting technology. And then, the modified PLA (PLA-g-GMA) was used as the compatibilizer for the preparation of the green composites consisting of PLA and cordia dichotoma fiber, by means of a blending process. The structure, mechanical, thermal properties and the best blending ratio of composite materials containing polylactide (PLA) and CDF were evaluated.
In this study, characterization of blends will be performed by FTIR and XRD to investigate the relationship between structure and crystallinity in the composites. In addition, DSC will examine structural properties and crystallinity of blends whilst compatibility of composites. Then, thermogravimetric analyzer (TGA), universal testing machine and scanning electron microscopy (SEM) are used to measure thermal stability, mechanical properties and surface morphology of composites, respectively. The results indicated that glycidyl methacrylate-grafted polylactic acid/cordia dichotoma fiber (PLA-g-GMA/CDF) improved mechanical property, because of the better compatibility. In addition, the tensile strength and impact strength of PLA-g-GMA/CDF was approximately 2.1-9.3% and 7.4-12.5% higher than that of PLA/CDF. Moreover, we got the best mechanical properties and optimal composites material when the CDF ratio was 10 wt%.

摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅳ 目錄 Ⅴ 圖索引 Ⅷ 表索引 Ⅹ 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 相關文獻回顧 4 2-1生物可分解塑膠 4 2-2 聚乳酸 12 2-3 纖維 16 2-4 植物纖維 19 2-5 破布子 27 2-6 綠色複合材料 29 2-7 相容劑 32 第三章 實驗材料與設備 36 3-1 實驗材料與藥品 36 3-2 實驗儀器 37 3-3 實驗流程 39 3-4實驗步驟 40 3-4-1破布子纖維前處理 40 3-4-2 PLA-g-GMA製備 41 3-4-3 PLA-g-GMA純化 41 3-4-4 PLA-g-GMA/破布子纖維複合材料之製備 43 3-5 材料分析 44 3-5-1傅立葉轉換紅外光譜分析 44 3-5-2 X光繞射分析 45 3-5-3熱重損失分析 46 3-5-4微差掃描熱分析 47 3-5-5熔融指數分析 48 3-5-6掃描式電子顯微鏡 49 3-5-7 萬能拉力試驗 50 3-5-8 材料衝擊試驗 51 第四章 結果與討論 52 4-1聚乳酸/破布子纖維複合材料之FTIR鑑定 52 4-2聚乳酸/破布子纖維複合材料之XRD鑑定 54 4-3聚乳酸/破布子纖維複合材料之TGA分析 56 4-4聚乳酸/破布子纖維複合材料之熱性質分析 58 4-5聚乳酸/破布子纖維複合材料之MI分析 62 4-6聚乳酸/破布子纖維複合材料之表面型態分析 64 4-7聚乳酸/破布子纖維複合材料之機械性質分析 67 4-8聚乳酸/破布子纖維複合材料之耐衝擊分析 69 第五章 結論 71 參考文獻 73

1. J.H. Song, R.J.Murphy, R.Narayan, G.B.H.Davies, “Biodegradable and compostable alternatives to conventional plastics,” Philosophical Transactions of the Royal Society, 364: 2127–2139(2009).
2. R.Jain, A.Tiwari, “Biosynthesis of planet friendly bioplastics using renewable carbon source,” Journal of Environmental Health Science & Engineering, 13: 11(2015).
3. V.Siracusa, P.Rocculi, S.Romani, M.D.Rosab, “Biodegradable polymers for food packaging: a review,” Trends in Food Science and Technology, 19: 634–643(2008).
4. 李吉祥、蔡金英、鄭旭軒、許順珠、楊奉儒,「綠色化學技術於工研院研發現況」,工業技術研究院 專題研究,(2008)。
5. V.Urtuvia, P.Villegas, M.González, M.Seeger, “Bacterial production of the biodegradable plastics polyhydroxyalkanoates,” International Journal of Biological Macromolecules, 70: 208–213(2014).
6. M.Okada, “Chemical syntheses of biodegradable polymers.” Progress in Polymer Science, 27: 87–133(2002).
7. J.Scheller, U.Conrad, “Plant-based material, protein and biodegradable plastic,” Current Opinion in Plant Biology, 8: 188–196(2005).
8. 蘇明德,「能自動分解的塑膠—可降解塑膠」,科學發展,448: 64–67(2010)。
9. 楊紹榮,「分解性塑膠在農業栽培之評估」,台南區農業專訊,3: 14–16(1993)。
10. 王榮基、許垤棋、翁茂盛、吳政達、劉美君、游俊凱、甘魯生,「愛護地球的新夥伴“綠色環保塑膠”」,綠能及綠色化學電子月刊,大同大學生物工程學系,5: 15–19(2010)。
11. B.D.Wilde, “International and national norms on biodegradability and certification procedures,” Handbook of Biodegradable Polymers, 5: 145-182(2005).
12. Y.Tokiwa, B.P.Calabia, C.U.Ugwu, S.Aiba, “Biodegradability of plastics,” International Journal of Molecular Sciences, 10: 3722-3742(2009).
13. A.J.R.Lasprilla, G.A.R.Martinez, B.H.Lunelli, A.L.Jardini, R.M.Filho, “Poly-lactic acid synthesis for application in biomedical devices—A review,” Biotechnology Advances, 30: 321–328(2012).
14. M.S.Lopes, A.L.Jardini, R.M.Filho, “Poly (lactic acid) production for tissue engineering applications,” Procedia Engineering, 42: 1402–1413(2012).
15. L. Jiang, J.Zhang, “Biodegradable and biobased polymers,” Applied Plastics Engineering Handbook, 9: 145–158(2011).
16. F.Achmad, K.Yamane, S.Quan, T.Kokugan, “Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators,” Chemical Engineering Journal, 151: 342–350(2009).
17. L.Ave´rous, “Synthesis, properties, environmental and biomedical applications of polylactic acid,” Handbook of Biopolymers and Biodegradable Plastics, 9: 171–188(2013).
18. M.S.Lopes, A.L.Jardini, R.M.Filho, “Synthesis and characterizations of poly (lactic acid) by ring-opening polymerization for biomedical applications,” Chemical Engineering Transactions, 38: 331–336(2014).
19. F.A.C.Martinez, E.M.Balciunas, J.M.Salgado, J.M.D.Gonzalez, A.Converti, R.P.Oliveira, “Lactic acid properties, applications and production: a review,” Trends in Food Science and Technology, 30: 70–83(2013).
20. K.M.Nampoothiri, N.R.Nair, R.P.John, “An overview of the recent developments in polylactide (PLA) research,” Bioresource Technology, 101: 8493–8501(2010).
21. S.R.Rathi, E.B.Coughlin, S.L.Hsu, C.S.Golub, G.H.Ling, M.J.Tzivanis, “Maintaining structural stability of poly(lactic acid): effects of multifunctional epoxy based reactive oligomers,” Polymers, 6: 1232–1250(2014).
22. S.J.Huang, “Poly(lactic acid) and copolyesters,” Handbook of Biodegradable Polymers, 9: 287−302(2005).
23. N.Reddy, D.Nama, Y.Yang, “Polylactic acid/polypropylene polyblend fibers for better resistance to degradation,” Polymer Degradation and Stability, 93: 233–241(2008).
24. P.Haque, A.J.Parsons, I.A.Barker, I.Ahmed, D.J.Irvine, G.S.Walker, C.D.Rudd, “Interfacial properties of phosphate glass fibres/PLA composites: Effect of the end functionalities of oligomeric PLA coupling agents,” Composites Science and Technology, 70: 1854–1860(2010).
25. Z.N.Terzopoulou, G.Z.Papageorgiou, E.Papadopoulou, E.Athanassiadou, E.Alexopoulou, D.N.Bikiaris, “Green composites prepared from aliphatic polyesters and bast fibers,” Industrial Crops and Products, 68: 60–79(2015).
26. 許明發、郭文雄,「複合材料纖維學」,全威圖書(2002)。
27. S.M.Hejazi, M.Sheikhzadeh, S.M.Abtahi, A.Zadhoush, “A simple review of soil reinforcement by using natural and synthetic fibers,” Construction and Building Materials, 30: 100–116(2012).
28. A.L.Frank, T.K.Joshi, “The global spread of asbestos,” Annals of Global Health, 80: 257–262(2014).
29. G.I.Williams, R.P.Wool, “Composites from natural fibers and soy oil resins,” Applied Composite Materials, 7: 421–432(2000).
30. V.Brulé, A.Rafsanjani, D.Pasini, T.L.Westerna, “Hierarchies of plant stiffness,” Plant Science, 250: 79–96(2016).
31. 游振宗,「天然纖維素纖維」,超級科技圖書(1989)。
32. A.C.O'sullivan, “Cellulose: the structure slowly unravels," CELLULOSE, 4: 173–207(1997).
33. H.Kang, R.Liu, Y.Huang, “Graft modification of cellulose: Methods, properties and applications,” Polymer, 70: A1–A16(2015).
34. K.Werner, L.Pommer, M.Broström, “Thermal decomposition of hemicelluloses,” Journal of Analytical and Applied Pyrolysis, 110: 130–137(2014).
35. H.V.Scheller, P.Ulvskov, “Hemicelluloses,” Annual Review of Plant Biology, 61: 263–289(2010).
36. R.Junli, P.Xinwen, Z.Linxin, P.Feng, S.Runcang, “Novel hydrophobic hemicelluloses: Synthesis and characteristic,” Carbohydrate Polymers, 89: 152–157(2012).
37. M.Norgren, H.Edlund, “Lignin: recent advances and emerging applications,” Current Opinion in Colloid and Interface Science, 19: 409–416(2014).
38. L.R.Adetunji, A.Adekunle, V.Orsat, V.Raghavan, “Advances in the pectin production process using novel extraction techniques: A review,” Food Hydrocolloids, 62: 239–250(2017).
39. O.Faruk, A.K.Bledzki, H.P.Fink, M.Sain, “Biocomposites reinforced with natural fibers: 2000–2010,” Progress in Polymer Science, 37: 1552–1596(2012).
40. V.Brulé, A.Rafsanjani, D.Pasini, T.L.Westerna, “Hierarchies of plant stiffness,” Plant Science, 250: 79–96(2016).
41. S.Gharehkhania, E.Sadeghinezhad, S.N.Kazi, H.Yarmand, A.Badarudin, M.R.Safaei, M.N.Zubir, “Basic effects of pulp refining on fiber properties—A review,” Carbohydrate Polymers, 115: 785–803(2015).
42. L.Yan, N.Chouw, K.Jayaraman, “Flax fibre and its composites – A review,” Composites: Part B, 56: 296–317(2014).
43. M.A.Rahman, F.Parvin, M.Hasan, M.E.Hoque, “Introduction to manufacturing of natural fibre-reinforced polymer composites,” Manufacturing of Natural Fibre Reinforced Polymer Composites, 2: 17–43(2015).
44. C.Y.Ragasa, Jr.V.Ebajo, M.M.Reyes, E.H.Mandia, M.C.S.Tan, R.Brkljača, S.Urban, “Chemical constituents of cordia dichotoma G. Forst,” Journal of Applied Pharmaceutical Science, 5(2): 16-21(2015).
45. J.Jayaramudu, A.Maity, E.R.Sadiku, B.R.Guduric, A.V.Rajulu, CH.V.V.Ramana, R.Li, “Structure and properties of new natural cellulose fabrics from cordia dichotoma,” Carbohydrate Polymers, 86: 1623–1629(2011).
46. A.Aberoumand, “Assessment of proximate and phytochemical composition for evaluation of nutritive values of some plant foods obtained from Iran and India,” Research in Organic Farming, 4: 59-70(2011).
47. R.Khandelwal, S.Sahu, S.K.Arora, S.P.A.Mathur, “Green approach for corrosion prevention,” International Journal of Chemistry and Chemical Engineering, 3(3): 197-200(2013).
48. R.Singh, R.D.Lawania, A.Mishra, R.Gupta, “Role of cordia dichotomaseeds and leaves extract in degenerative disorders,” International Journal of Pharmaceutical Sciences Review and Research, 2: 21–24(2010).
49. 毛賢宗,「破布子栽培及加工利用」,台南區農業專訊,9: 7–9(1994)。
50. 何哲良,「台商引進破布子新品種在海南種植」,海峽科技與產業,5: 28(2003)。
51. B.S.Baek, J.W.Park, B.H.Lee, H.J.Kim, “Development and application of green composites: Using coffee ground and bamboo flour,” Journal of Polymers and the Environment, 21: 702–709(2013).
52. 費燕娜、高衛東、王鴻博、王銀利、陳艷,「茶多酚/聚乳酸複合納米纖維膜的製備及抗菌性能研究」,材料導報,24: 42–45(2010)。
53. L.Wang, Z.Tong, L.O.Ingram, Q.Cheng, S.Matthews, “Green composites of poly (lactic acid) and sugarcane bagasse residues from bio-refinery processes,” Journal of Polymers and the Environment, 21: 780–788(2013).
54. R.Jain, A.Tiwari, “Biosynthesis of planet friendly bioplastics using renewable carbon source,” Journal of Environmental Health Science and Engineering, 13: 11(2015).
55. J.M.Urreaga, S.C.Gonzalez, A.A.Martinez, V.C.Fonseca, J.Acosta, M.U.Orden, “Sustainable eco-composites obtained from agricultural and urban waste plastic blends and residual cellulose fibers,’ Journal of Cleaner Production, 108: 377–384(2015).
56. M. Bulota, T.Budtova, “PLA/algae composites: Morphology and mechanical properties,” Composites: Part A, 73: 109–115(2015).
57. I.S.M.A.Tawakkal, M.J.Cran, S.W.Bigger, “Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites,” Industrial Crops and Products, 61: 74–83(2014).
58. Y.Dong, A.Ghataura, H.Takagi, H.J.Haroosh, A.N.Nakagaito, K.T.Lau, “Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties,” Composites: Part A, 63: 76–84(2014).
59. M.R.Manshora, H.Anuar, M.N.Nur Aimi, M.I.Ahmad Fitrie, W.B.Wan Nazri, S.M.Sapuan, Y.A.El-Shekeil, M.U.Wahit, “Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites,” Materials and Design, 59: 279–286(2014).
60. W.Sujaritjun, P.Uawongsuwan, W.Pivsa-Art, H.Hamada, “Mechanical property of surface modified natural fiber reinforced PLA biocomposites,” Energy Procedia, 34: 664 – 672(2013).
61. J.Jayaramudu, G.S.M.Reddy, K.Varaprasad, E.R.Sadiku, S.S.Ray, A.V.Rajulu, “Structure and properties of poly (lactic acid)/sterculia urens uniaxial fabric biocomposites,” Carbohydrate Polymers, 94: 822–828(2013).
62. K.Halake, H.J.Kim, M.Birajdar, B.S.Kim, H.Bae, C.C.Lee, Y.J.Kim, S.Kim, S.Ahn, S.Y.An, S.H.Jung, J.Lee, “Recently developed applications for natural hydrophilic polymers,” Journal of Industrial and Engineering Chemistry, 40: 16–22(2016).
63. C.Koning, M.V.Duin, C.Pagnoulle, R.Jerome, “Strategies for compatibilization of polymer blends,” Progress in Polymer Science, 23: 707–757(1998).
64. J.K.Fink, “Grafting,” Reactive Polymers Fundamentals and Applications, 18: 425–452(2013).
65. J.L.Williams, V.Stannett, L.G.Roldan, S.B.Sello, G.V.Stevens, “Graft copolymers as elastomeric fibers --II. Mechanical properties and mor- phology of grafted copolymers,” International Journal of Applied Radiation and Isotopes, 26: 169–178(1975).
66. N.Dharmarajan, S.Datta, G.Ver Strate, L.Ban, “Compatibilized polymer blends of isotactic polypropylene and styrene-maleic anhydride copolymer,” Polymer, 36(20): 3849–3861(1995).
67. B.Ohlsson, H.Hassander, B.Tornell, “Improved compatibility between polyamide and polypropylene by the use of maleic anhydride grafted SEBS,” Polymer, 39(26): 6705–6714(1998).
68. H.D.Rozman, K.W.Tan, R.N.Kumar, A.Abubakar, Z.A.M.Ishak, H.Ismail, “The effect of lignin as a compatibilizer on the physical properties of coconut fiber–polypropylene composites,” European Polymer Journal, 36: 1483–1494(2000).
69. H.K.Jeon, B.J.Feist, S.B.Koh, K.Chang, C.W.Macosko, R.P.Dion, “Reactively formed block and graft copolymers as compatibilizers for polyamide 66/PS blends,” Polymer, 45: 197–206(2004).
70. S.Sangthong, T.Pongprayoon, N.Yanumet, “Mechanical property improvement of unsaturated polyester composite reinforced with admicellar-treated sisal fibers,” Composites: Part A, 40: 687–694(2009).
71. Q.Shi, C.Chen, L.Gao, L.Jiao, H.Xu, W.Guo, “Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE,” Polymer Degradation and Stability, 96: 175–182(2011).
72. V.K.Thakur, M.K.Thakur, R.K.Guptac, “Graft copolymers of natural fibers for green composites,” Carbohydrate Polymers, 104: 87–93(2014).
73. B.A.Khan, V.S.Chevali, H.Na, J.Zhu, P.Warner, H.Wang, “Processing and properties of antibacterial silver nanoparticle-loaded hemp hurd/poly(lactic acid) biocomposites,” Composites Part B, 100: 10–18(2016).
74. W.Yang, F.Dominici, E.Fortunati, J.M.Kenny, D.Puglia, “Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate-g-poly (lactic acid) films before and after accelerated UV weathering,” Industrial Crops and Products, 77: 833–844(2015).
75. K.Z.Elwakeela, E.Guibal, “Potential use of magnetic glycidyl methacrylate resin as a mercury sorbent: From basic study to the application to wastewater treatment,” Journal of Environmental Chemical Engineering, 4: 3632–3645(2016).
76. J.F.Turner, A.Riga, A.O’Connor, J.Zhang, J.Collis, “Characterization of drawn and undrawn poly-L-lactide films by differential scanning calorimetry,” Chemistry Faculty Publications, 303: 257–268(2004).
77. V.H.Orozco, W.Brostow, W.Chonkaew, B.L.Lo´pez, “Preparation and characterization of poly(lactic acid)-g-maleic anhydride starch blends,” Macromolecular Symposia, 277: 69–80(2009).
78. B.A.Khan, H.Na, V.Chevali, P.Warner, J.Zhu, H.Wang, “Glycidyl methacrylate-compatibilized poly(lactic acid)/hemp hurd biocomposites: Processing, crystallization, and thermo-mechanical response,” Journal of Materials Science & Technology, (2017).
79. H.Macková, F.Oukacine, Z.Plichta, M.Hruby´, J.Kucˇka, M.Taverna, D.Horák, “Poly(glycidyl methacrylate)/silver nanocomposite microspheres as a radioiodine scavenger: Electrophoretic characterisation of carboxyl-and amine-modified particles,” Journal of Colloid and Interface Science, 421: 146–153(2014).
80. F.A.Santos, M.I.Tavares, “Development and characterization of hybrid materials based on biodegradable PLA matrix, microcrystalline cellulose and organophilic silica,” Polímeros, 24(5): 561−566(2014).

QR CODE