簡易檢索 / 詳目顯示

研究生: 黃浩銘
Ho-ming Wong
論文名稱: 治療退化性膝關節炎的高位脛骨截骨術生物力學研究
Biomechanical Study of High Tibial Osteotomy for Degenerative Knee Osteoarthritis
指導教授: 林上智
Shang-chih Lin
口試委員: 許維君
none
花世源
none
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 退化性膝關節炎高位脛骨截骨術,
外文關鍵詞: Knee osteoarthritis, high tibial osteotomy
相關次數: 點閱:159下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於科技與醫學不斷的進步,人類平均壽命增加,各種因為老化所造成的疾病也伴隨而來,其中一個很好的例子就是退化性膝關節炎。治療退化性膝關節炎的方式有很多,臨床主要的治療方式有: (1)全膝關節置換術;(2)高位脛骨截骨手術。治療方式中,全膝關節置換術要切除骨頭為不可回復性,主要使用在晚期治療的方式,早期治療方式比較適用高位脛骨截骨手術,保留骨本,延長二次手剩的時間。
高位脛骨截骨手術是否成功就要看手術後骨板骨釘系統固定在骨頭上的穩定度。而常常造成手術失敗的原因是骨板骨釘系統的鋼性不夠而斷裂或是骨釘不能牢牢的咬住骨頭而鬆脫。造成手術失敗的問題主因是骨板骨釘系統的設計上不能穩定的固定在骨頭上。
本研究使用有限元素分析和生物力學實驗來研究不同形式的開口式高位脛骨截骨手術骨板骨釘系統固定在骨頭上的穩定度。使用有限元素分析四種不同型式的骨板骨釘系統之穩定情況和應力分布狀況。生物力學實驗主要測試兩種不同型式的骨板骨釘系統的穩定情況,重實驗的結果驗證那一種型式的骨板骨釘系統方式使用在手術上可以有更好穩固性,使得病人修口癒合更快,提高手術成功率。


Continuous progress of science, technology and medicine, the average human life expectancy increases, diseases caused by a variety of aging is also accompanied by a good example of knee osteoarthritis. There are many ways the treatment of osteoarthritis of the knee, clinical treatment: (1) total knee arthroplasty; (2) high tibial osteotomy. Treatment, total knee arthroplasty resection of bone for non-recovery of the main treatment in the late, early treatment for high tibial osteotomy, to retain bone mass, to extend the time the second hand left.
High tibial osteotomy surgery is successful depends on the bone plate bone screw system in the post-operative stability of bones. Often resulting in surgical failure because steel bone plate bone screw system is not enough to fracture or bone screws can not be firmly bite the bones and loose. Cause of surgical failure mainly due to the bone plate bone screw system design can not be stable in the bones.
In this study, using finite element analysis and biomechanical experiments to study the different forms of opening high tibial bone osteotomy surgery bone plate bone screw system stability bones. Using finite element analysis of four different types of bone plate bone screw system stability and stress distribution. The stability of the bone screw system of biomechanics experiments to test two different types of bone plates, heavy experimental results verify that a type of bone plate the bone screw system use of surgery can have better stability, making the patient to repair the wound healingfaster, improve the success rate.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 文獻回顧 2 1.3.1 膝關節之解剖學與生物力學 3 1.3.2 膝關節運動學介紹 7 1.3.3 退化性膝關節炎簡介 9 1.3.4 高位脛骨截骨手術(HTO)簡述 12 1.3.5 脛骨骨板之力學分析 14 第二章 生物力學實驗 19 2.1高位脛骨截骨手術假體之建立 19 2.1.1 高位脛骨截骨手術資料之蒐集 19 2.1.2 高位脛骨截骨手術假體之重建 22 2.2 HTO骨板與骨釘系統之固定 26 2.2.1 TomoFix HTO骨板骨釘系統之固定 27 2.2.2 T加I HTO骨板骨釘系統之固定 28 2.3 脛骨與夾治具之配合及設計 33 2.3.1 夾治具之設計 34 2.3.2 脛骨與夾治具之配合 36 2.4 受力條件與參數設定 37 第三章 有限元素分析 38 3.1 三維脛骨圖檔之建立 38 3.2 三維HTO骨板與骨釘模型之建立 40 3.2.1 現有HTO骨板模型之建立 41 3.2.2 新型HTO骨板模型之建立 41 3.2.3 HTO骨板之骨釘模型建立 41 3.3 脛骨與骨板之配合及材料性質 42 3.3.1 脛骨與骨板之配合 42 3.3.2 脛骨與骨板之材料性質 43 3.3.3 脛骨與骨板骨釘之結合條件 46 3.4 受力條件與參數設定 47 3.5 網格設定與建立 48 圖3-6受力條件與參數設定示意圖。脛骨模型受力條件有:(1)步態最大受力情況為一千二百牛頓,總力分為外側受力60%和內側受力40%;(2)手術缺口之術後回復力。 49 3.5.1 網格設定 49 3.5.2 網格建立 50 3.6 有限元素分析 50 第四章 結果 64 4.1 缺口位移分析結果 64 4.1.1 有限元素分析缺口位移結果 64 4.1.2 有限元素分析Von Mises Stress結果 66 4.2 生物力學結果 68 4.2.1 失效後的脛骨情況 72 第五章 討論 75 5.1 裂口位移分析討論 75 5.1.1有限元素分析結果討論 75 5.1.2 Von Mises Stress討論 77 5.2 生物力學結果討論 78 5.2.1 缺口位移結果討論 78 5.2.2 失效後的脛骨情況討論 79 第六章 結論與未來展望 81 第七章 參考文獻 82

[1] L. D. Blecha, P. Y. Zambelli, N. A. Ramaniraka, P. E. Bourban, J. A. Manson, and D. P. Pioletti, "How plate positioning impacts the biomechanics of the open wedge tibial osteotomy; a finite element analysis," Comput Methods Biomech Biomed Engin, vol. 8, pp. 307-13, Oct 2005.
[2] A. E. Staubli, C. De Simoni, R. Babst, and P. Lobenhoffer, "TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia--early results in 92 cases," Injury, vol. 34 Suppl 2, pp. B55-62, Nov 2003.
[3] R. Takeuchi, H. Ishikawa, M. Aratake, H. Bito, I. Saito, K. Kumagai, Y. Akamatsu, and T. Saito, "Medial opening wedge high tibial osteotomy with early full weight bearing," Arthroscopy, vol. 25, pp. 46-53, Jan 2009.
[4] J. D. Agneskirchner, D. Freiling, C. Hurschler, and P. Lobenhoffer, "Primary stability of four different implants for opening wedge high tibial osteotomy," Knee Surg Sports Traumatol Arthrosc, vol. 14, pp. 291-300, Mar 2006.
[5] S. C. Lee, K. A. Jung, C. H. Nam, S. H. Jung, and S. H. Hwang, "The short-term follow-up results of open wedge high tibial osteotomy with using an Aescula open wedge plate and an allogenic bone graft: the minimum 1-year follow-up results," Clin Orthop Surg, vol. 2, pp. 47-54, Mar 2010.
[6] E. M. Nelissen, E. J. van Langelaan, and R. G. Nelissen, "Stability of medial opening wedge high tibial osteotomy: a failure analysis," Int Orthop, vol. 34, pp. 217-23, Feb 2010.
[7] R. Carola, J. P. Harley, C. R. Noback, and L. Yujing. (1996). HUMAN ANATOMY.
[8] Y. JIANXING, J. PEIRU, and H. QIUHUI, "People to heal the heart mass of knee osteoarthritis in the treatment of new concepts," in People to heal the heart mass, L. SHAORUI, Ed., ed, 2010-6, pp. 18-27.
[9] D. E. Hurwitz, D. R. Sumner, T. P. Andriacchi, and D. A. Sugar, "Dynamic knee loads during gait predict proximal tibial bone distribution," J Biomech, vol. 31, pp. 423-30, May 1998.
[10] M. B. Coventry, "Osteotomy of the Upper Portion of the Tibia for Degenerative Arthritis of the Knee. A Preliminary Report," J Bone Joint Surg Am, vol. 47, pp. 984-90, Jul 1965.
[11] J. P. Jackson, W. Waugh, and J. P. Green, "High tibial osteotomy for osteoarthritis of the knee," J Bone Joint Surg Br, vol. 51, pp. 88-94, Feb 1 1969.
[12] J. JP, Osteotomy for osteoarthritis of the knee. In proceedings of the sheffield regional orthopaedic club vol. 40B:826, 1958.
[13] W. R. Harris and J. P. Kostuik, "High tibial osteotomy for osteo-arthritis of the knee," J Bone Joint Surg Am, vol. 52, pp. 330-6, Mar 1970.
[14] A. Miniaci, F. T. Ballmer, P. M. Ballmer, and R. P. Jakob, "Proximal tibial osteotomy. A new fixation device," Clin Orthop Relat Res, pp. 250-9, Sep 1989.
[15] A. Billings, D. F. Scott, M. P. Camargo, and A. A. Hofmann, "High tibial osteotomy with a calibrated osteotomy guide, rigid internal fixation, and early motion. Long-term follow-up," J Bone Joint Surg Am, vol. 82, pp. 70-9, Jan 2000.
[16] P. Lobenhoffer and J. D. Agneskirchner, "Improvements in surgical technique of valgus high tibial osteotomy," Knee Surg Sports Traumatol Arthrosc, vol. 11, pp. 132-8, May 2003.
[17] J. M. Scarvell, P. N. Smith, K. M. Refshauge, H. R. Galloway, and K. R. Woods, "Evaluation of a method to map tibiofemoral contact points in the normal knee using MRI," J Orthop Res, vol. 22, pp. 788-93, Jul 2004.
[18] R. Takeuchi, H. Bito, Y. Akamatsu, T. Shiraishi, S. Morishita, T. Koshino, and T. Saito, "In vitro stability of open wedge high tibial osteotomy with synthetic bone graft," Knee, vol. 17, pp. 217-20, Jun 2010.
[19] A. Hemmerich, H. Brown, S. Smith, S. S. Marthandam, and U. P. Wyss, "Hip, knee, and ankle kinematics of high range of motion activities of daily living," J Orthop Res, vol. 24, pp. 770-81, Apr 2006.
[20] G. Li, S. Zayontz, L. E. DeFrate, E. Most, J. F. Suggs, and H. E. Rubash, "Kinematics of the knee at high flexion angles: an in vitro investigation," J Orthop Res, vol. 22, pp. 90-5, Jan 2004.
[21] K. B. Shelburne, M. R. Torry, and M. G. Pandy, "Muscle, ligament, and joint-contact forces at the knee during walking," Med Sci Sports Exerc, vol. 37, pp. 1948-56, Nov 2005.
[22] J. A. Szivek, L. Cutignola, and R. G. Volz, "Tibiofemoral contact stress and stress distribution evaluation of total knee arthroplasties," J Arthroplasty, vol. 10, pp. 480-91, Aug 1995.
[23] F. Zhim, G. Y. Laflamme, H. Viens, K. Saidane, and L. Yahia, "Biomechanical stability of high tibial opening wedge osteotomy: internal fixation versus external fixation," Clin Biomech (Bristol, Avon), vol. 20, pp. 871-6, Oct 2005.
[24] L. Cristofolini and M. Viceconti, "Mechanical validation of whole bone composite tibia models," J Biomech, vol. 33, pp. 279-88, Mar 2000.
[25] A. D. Heiner and T. D. Brown, "Structural properties of a new design of composite replicate femurs and tibias," J Biomech, vol. 34, pp. 773-81, Jun 2001.
[26] M. Jacobi, PeterWahl, and R. P. Jakob, "Basic principles of osteotomies around the knee," in Osteotomies around the Knee, ed, 2008, pp. 29-38.
[27] Y. Fujisawa, K. Masuhara, and S. Shiomi, "The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints," Orthop Clin North Am, vol. 10, pp. 585-608, Jul 1979.
[28] Synthes, "TomoFix Medial High Tibial Plate (MHT) Technique Guide," 2010.
[29] G. Spahn, T. Muckley, E. Kahl, and G. O. Hofmann, "Biomechanical investigation of different internal fixations in medial opening-wedge high tibial osteotomy," Clin Biomech (Bristol, Avon), vol. 21, pp. 272-8, Mar 2006.
[30] D. Pape, O. Lorbach, C. Schmitz, L. C. Busch, N. Van Giffen, R. Seil, and D. M. Kohn, "Effect of a biplanar osteotomy on primary stability following high tibial osteotomy: a biomechanical cadaver study," Knee Surg Sports Traumatol Arthrosc, vol. 18, pp. 204-11, Feb 2010.
[31] C. D. Wrann, C. Hurschler, P. Lobenhoffer, and J. D. Agneskirchner, "Effect of osteotomy on cartilage pressure in the knee," in Osteotomies around the Knee, ed, 2008, pp. 105-115.
[32] W. R. Taylor, M. O. Heller, G. Bergmann, and G. N. Duda, "Tibio-femoral loading during human gait and stair climbing," J Orthop Res, vol. 22, pp. 625-32, May 2004.
[33] L. D. BLECHA, P. Y. ZAMBELLI, N. A. RAMANIRAKA, P.-E. BOURBAN, J.-A. M. NSON, and D. P. PIOLETTI, "How plate positioning impacts the biomechanics of the open wedge tibial osteotomy; A finite element analysis," Computer Methods in Biomechanics and Biomedical Engineering, vol. 8, pp. 307-313, 2005.

QR CODE