簡易檢索 / 詳目顯示

研究生: 吳紹逸
Shaw-Yih Wu
論文名稱: 需求及技術不確定性下之最佳技術投資組合與產能規劃模式
An optimal technology portfolio adoption model considering capacity planning under demand and technology uncertainty
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 曹譽鐘
Yu-Chung Tsao
游兆鵬
Chao-Pen Yu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 52
中文關鍵詞: 產能規劃技術合併馬可夫決策程序差異化演算法平行運算
外文關鍵詞: capacity planning, technology portfolio, Markov decision process, differential evolution, parallel computing.
相關次數: 點閱:221下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一個在需求不確定性及技術創新下之資源投資組合規劃最佳化模型。此模型將同時提供決策者進行最佳技術選擇策略及產能與資源分配,期使利潤最大化。本研究利用馬可夫決策程序建立模型,每一行動(action)代表現階段投資的技術所需使用時間長度,亦代表一個子問題,每個子問題則以混和整數線性規劃建模為最佳產能與資源分配問題。本研究利用平行抽樣為基之差異化演算法進行每一個子問題的求解,而最佳遞歸函數則用於馬可夫決策模型的求解。為提高求解效率,本研究採用非可行解之修正機制於差異化演算法中。此外,本研究也使用平行運算,藉此減緩馬可夫決策模型高複雜計算之負擔。在實驗部分,本研究採用田口實驗方法進行敏感度分析,藉以找出演算法之最佳參數組合。本研究差異化演算法與其他被廣泛使用的演算法做比較,結果顯示其表現良好。最後,本研究亦評估在不同需求變異水準下對預期利潤所造成的影響。


    One of the most challenging issues for industry is how to tackle technology adoption and capacity planning simultaneously under uncertainty. In this research, a technology portfolio adoption model considering capacity planning under demand and technological uncertainty is proposed. The model optimizes technology portfolio and simultaneously addresses the optimal capacity planning to maximize the profit in a planning horizon. The problem is modeled by Markov decision process (MDP), of which each action is presented as a desired length of time to retain the currently used technologies, in which the capacity planning problem is modeled by a stochastic mixed linear integer programming (SMLIP) problem. For achieving an efficient solution approach, a parallel sampling-based differential evolution (PSDE) algorithm is employed to solve the SMLIP problem. After that, an optimality backward recursive function is proposed to solve the MDP problem. Further, a parallel computing technique is utilized to relax the computational burden of the MDP model. In the experiment, a sensitive analysis is conducted to investigate effects of the algorithm parameters by using Taguchi method. Furthermore, a performance comparison among PSDE and other popular algorithms is conducted. Finally, we evaluate the impact of different levels of demand variance and risk of investment on the expected profit.

    Contents 致謝.......................................................................I Abstract.................................................................III 摘要......................................................................IV List of Table............................................................VII List of Figure...........................................................VII Chapter 1 Introduction.....................................................1 1.1 Research background and objective..................................1 1.2 Research motivation................................................2 1.3 Research organization..............................................3 Chapter 2 Literature review................................................4 2.1 Capacity planning considering technology uncertainty...............4 2.2 Capacity planning considering demand uncertainty...................5 2.3 Differential evolution algorithm (DE)..............................6 2.4 Summarizing........................................................7 Chapter 3 Model formulation................................................8 3.1 Modeling on technology portfolio...................................8 3.2 Modeling on Capacity planning.....................................12 Chapter 4 Solution procedure..............................................16 4.1 Sequential DE algorithm with solution repairing mechanism.........16 4.1.1 Initial population................................................16 4.1.2 Mutation..........................................................17 4.1.3 Crossover.........................................................17 4.1.4 Selection.........................................................18 4.2 The proposed parallel sampling-based differential evolution algorithm.................................................................20 Chapter 5 Experiment result...............................................23 5.1 Optimal parameter setting.........................................23 5.2 Algorithm benchmarking............................................26 5.3 Suggested capacity planning and technology portfolio adoption.....30 Chapter 6 Conclusion......................................................34 Reference.................................................................35 Appendix..................................................................38

    References
    Bard, J. F., Srinivasan, K., & Tirupati, D. (1999). An optimization approach to capacity expansion in semiconductor manufacturing facilities.International Journal of Production Research,37(15), 3359-3382.
    Bashyam, T. C. A. (1996). Competitive capacity expansion under demand uncertainty. European Journal of Operational Research, 95(1), 89-114.
    Camisón, C., & Villar-López, A. (2014). Organizational innovation as an enabler of technological innovation capabilities and firm performance. Journal of Business Research, 67(1), 2891-2902.
    Chen, C. S., Mestry, S., Damodaran, P., & Wang, C. (2009). The capacity planning problem in make-to-order enterprises. Mathematical and computer modelling, 50(9), 1461-1473.
    Derman, C. (1963). Optimal replacement and maintenance under Markovian deterioration with probability bounds on failure. Management Science, 9(3), 478-481.
    Gonuguntla, V., Mallipeddi, R., & Veluvolu, K. C. (2015). Differential evolution with population and strategy parameter adaptation. Mathematical Problems in Engineering, 2015.
    Hitt, E. F., & Schmidt, J. (1998, October). Technology obsolescence (TO) impact on future costs. In Digital Avionics Systems Conference, 1998. Proceedings., 17th DASC. The AIAA/IEEE/SAE (Vol. 1, pp. A33-1). IEEE.
    Lieckens, K., & Vandaele, N. (2015). Differential evolution to solve the lot size problem in stochastic supply chain management systems. Annals of Operations Research, 1-25.
    McAndrew, C. C., Seitchik, J. A., Bowers, D. F., Dunn, M., Foisy, M., Getreu, I., ... & Schroter, M. (1996). VBIC95, the vertical bipolar inter-company model. IEEE Journal of Solid-State Circuits, 31(10), 1476-1483.
    Mohajery, M., & Khoshalhan, F. (2008). Application of differential evolution for a single-item resource-constrained aggregate production planning problem. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 2).
    Nguyen, T. K., Yeung, T. G., & Castanier, B. (2013). Optimal maintenance and replacement decisions under technological change with consideration of spare parts inventories. International Journal of Production Economics, 143(2), 472-477.
    Nolasco, J. F. E. (2007). System Reliability Estimation and Component Replacement Analysis for Electricity Transmission and Distribution Systems. ProQuest.
    Berman, O., Ganz, Z., & Wagner, J. M. (1994). A stochastic optimization model for planning capacity expansion in a service industry under uncertain demand. Naval Research Logistics (NRL), 41(4), 545-564.
    Ouarda, A., & Bouamar, M. (2014). A comparison of evolutionary algorithms: PSO, DE and GA for fuzzy c-partition. International Journal of Computer Applications, 91(10).
    Rajagopalan, S. (1998). Capacity expansion and equipment replacement: A unified approach.Operations Research, 46(6), 846-857.
    Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167(1), 96-115.
    Šebo, J., Buša, J., Demeč, P., & Svetlík, J. (2013). Optimal replacement time estimation for machines and equipment based on cost function. Metalurgija, 52(1), 119-122.
    Tušar, T., & Filipič, B. (2007, March). Differential evolution versus genetic algorithms in multiobjective optimization. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 257-271). Springer Berlin Heidelberg.
    Wang, K. J., & Lee, C. H. (2015). A revised ant algorithm for solving location–allocation problem with risky demand in a multi-echelon supply chain network. Applied Soft Computing, 32, 311-321.
    Wang, K. J., & Lin, S. H. (2002). Capacity expansion and allocation for a semiconductor testing facility under constrained budget.Production Planning & Control, 13(5), 429-437.
    Wu, C. H., & Chuang, Y. T. (2010). An innovative approach for strategic capacity portfolio planning under uncertainties. European Journal of Operational Research, 207(2), 1002-1013.
    Wu, C. H., & Chuang, Y. T. (2012). An efficient algorithm for stochastic capacity portfolio planning problems. Journal of Intelligent Manufacturing, 23(6), 2161-2170.
    Wu, J. H., & Huang, Y. H. (2014). Electricity portfolio planning model incorporating renewable energy characteristics. Applied Energy, 119, 278-287.
    Wu, Y. C., Lee, W. P., & Chien, C. W. (2011). Modified the performance of differential evolution algorithm with dual evolution strategy. In International Conference on Machine Learning and Computing (Vol. 3, pp. 57-63).

    QR CODE